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The results from 3 category learning experiments suggest that items are better remembered when they
violate a salient knowledge structure such as a rule. The more salient the knowledge structure, the
stronger the memory for deviant items. The effect of learning errors on subsequent recognition appears
to be mediated through the imposed knowledge structure. The recognition advantage for deviant items
extends to unsupervised learning situations. Exemplar-based and hypothesis-testing models cannot
account for these results. The authors propose a clustering account in which deviant items are better
remembered because they are differentiated from clusters that capture regularities. The function of
clusters is akin to that of schemas. Their results and analyses expose connections among research in
category learning, schemas, stereotypes, and analogy.

People’s ability to categorize underlies many of their cognitive
abilities. Classifying a person as a friend, an animal as a dog, and
a piece of music as classical are all acts of categorization. For
categorization to take place, categories must first be acquired.
Consequently, there has been a great deal of interest in understand-
ing how individuals acquire categories from examples. Acquiring
new categories necessarily involves changes in memory. The work
presented here asks what is stored in memory as a result of
category learning. More specifically, the current work explores the
effect of category structure and category learning errors on recog-
nition memory.

The acquisition of new categories is often accompanied by
category learning errors. For example, a grade school student may
categorize a dolphin as a fish. During learning, some category
members result in more errors than others. For example, dolphins,
whales, and bats are likely to lead to numerous errors when
learning about biological categories, whereas sharks, dogs, and
robins are less likely to lead to errors. One question we consider is
how error rate in acquisition influences subsequent recognition
memory.

Determining the relationship between error and recognition rate
is not trivial. Other factors are commonly confounded with error
rate. For instance, high-error items usually violate a known regu-
larity or rule. A young child may classify all animals that fly as
birds. Robins, eagles, and blue jays satisfy this rule, whereas
penguins, ostriches, and bats violate this rule and will result in
errors upon initial exposure. If a high-error item is better remem-

bered, it is unclear whether this advantage arises from a prepon-
derance of acquisition errors or because the item deviates from an
existing knowledge structure (in this case a rule). Furthermore, if
violating a known regularity leads to improved memory, how does
the nature of the regularity affect memory for deviant items? For
instance, the degree of coherence of regularity may play a large
role in determining how well violating items are remembered.

Addressing these questions requires an integration of classic
work in memory, schema application, stereotypes, and category
learning (including computational modeling). We briefly review a
subset of relevant work in these areas. Though conceptually re-
lated, work in these areas is not as theoretically integrated as one
might expect. After consideration of past results, we argue that
items are better recognized to the extent that they deviate from an
existing and coherent knowledge structure such as a rule, schema,
or prototype. Three experiments test our account. Experiment 1’s
results suggest that the degree of coherence of a knowledge struc-
ture influences the recognition of deviating items, which conflicts
with a strict rule-based account of knowledge representations.
Experiment 2’s results demonstrate that a deviant item is better
recognized even in the absence of training errors. Finally, Exper-
iment 3’s design attempts to separate error rate from violation of a
salient knowledge structure. The results suggest that a preponder-
ance of errors can have a role in enhancing recognition memory,
but the effect is mediated by subjects’ allocation of study time and
imposition of structure on the domain.

Our results prove problematic for many existing models of
category learning and subsequent recognition. We propose a
cluster-based account of category learning that groups related
items into a cluster and stresses the role of cluster coherence and
differentiation in memory. This account is in accord with our
review of research in memory, schemas, and stereotypes.

Background and Motivation

We advance that existing knowledge structures play a role in
determining which items are best remembered after a category
learning episode. One such candidate structure is a schema. A
schema is a general knowledge structure that provides a set of
expectations based on prior experience (Brewer & Treyens, 1981;
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Graesser & Nakamura, 1982; Hastie, 1981; Taylor & Crocker,
1981). For example, a person may have a schema for birds that
when activated makes properties like flying and laying eggs avail-
able. Schemas can guide the encoding and retrieval of information
(Alba & Hasher, 1983; Brewer & Nakamura, 1984; Loftus &
Mackworth, 1978; Pichert & Anderson, 1977; Srull, 1981). Cate-
gory information learned from examples can serve similar func-
tions (Goldstone, 1994; Schyns & Murphy, 1994; Wisniewski &
Medin, 1994).

Work in the schema and categorization literatures addresses a
related set of issues. We draw parallels between these two litera-
tures and argue that findings from both literatures suggest that
items tend to be better remembered to the extent that they conflict
with an established knowledge structure. It might seem odd that
such parallels are not already firmly established. One explanation
for the disconnect is the varying methodologies and priorities of
the two fields. Work in schemas and stereotypes tends to utilize
concepts that are already meaningful to subjects. In contrast, the
majority of work in category learning tends to use artificial cate-
gories composed of geometric stimuli that have no meaning out-
side of the experimental context. In a typical category learning
experiment, subjects learn to assign geometric stimuli to one of
two mutually exclusive categories (e.g., Categories A and B)
through trial-by-trial classification learning with corrective feed-
back (e.g., Estes, 1994; Maddox & Ashby, 1993; Medin & Schaf-
fer, 1978; Nosofsky, 1988). The category learning work that does
involve meaningful prior knowledge tends to focus on how such
knowledge can facilitate the acquisition of novel categories (Mur-
phy & Allopenna, 1994; Pazzani, 1991; Wattenmaker, Dewey,
Murphy, & Medin, 1986). Accordingly, error rate is the primary
dependent measure for the majority of work in category learning,
whereas measures of recognition and recall figure more promi-
nently in the schema literature. Nevertheless, work from both areas
bears on the research questions considered here.

Consistent and Inconsistent Information

One central issue in schema research is whether schema-
consistent or schema-inconsistent information is better remem-
bered. For example, encountering a book in a library would be
schema consistent (i.e., in accord with expectations), whereas
encountering a concert stage would be schema inconsistent. Work
in social beliefs and stereotypes has found a memory advantage for
schema-consistent information relative to schema-inconsistent in-
formation (Rothbart, Evans, & Fulero, 1979; Snyder & Uranowitz,
1978). Social schemas are proposed to function as filtering devices
for inconsistent information that lead to inconsistent information
being ignored or discounted during the encoding process (Taylor
& Crocker, 1981). For example, an accountant’s rowdy behavior at
a party can simply be ignored or explained away by inferring the
accountant was drunk.

The schema-consistent memory advantage has been challenged
by other studies that demonstrate that schema-inconsistent infor-
mation is remembered better than schema-consistent information
(Bower, Black, & Turner, 1979; Goodman, 1980; Hastie & Kumar,
1979; Pezdek, Whetstone, Reynolds, Askari, & Dougherty, 1989).
For example, Hastie and Kumar presented subjects with a list of
synonymous adjectives that created a coherent impression of a
character. After acquiring this “person schema,” behaviors that

were inconsistent with this schema were better remembered than
those that were consistent.

Rojahn and Pettigrew (1992) conducted a meta-analysis for
memory for schema-consistent and schema-inconsistent informa-
tion and resolved the apparent contradictions across studies. When
measures of recognition are corrected for false-alarm rate, schema-
inconsistent information is remembered better than schema-
consistent information. For a library schema, a common false
alarm might be reporting to have seen a book when in fact a book
did not appear in any studied scene. Stangor and McMillan (1992)
conducted a similar meta-analysis in stereotype research and
reached the same conclusion as Rojahn and Pettigrew. This ten-
dency to false alarm to consistent information can also be seen in
the Deese–Roediger–McDermott false-memory paradigm (Deese,
1959; Roediger & McDermott, 1995). After correcting for false
alarms, the schema-inconsistent memory advantage holds for chil-
dren, adults, and older adults (List, 1986).

The schema-inconsistent memory advantage may be a specific
case of a general advantage for distinctive information. Isolated or
deviant events, such as a single word in uppercase in a list of
lowercase words, tend to show a recall advantage (Koffka, 1935;
von Restorff, 1933; Wallace, 1965). This phenomenon is com-
monly referred to as the “von Restorff or isolation effect.” Unlike
typical work in schemas, but like typical work in category learn-
ing, subjects gain an appreciation for the structure of the study
items during these studies. Once subjects acquire an expectation
for the items, the deviant item is analogous to schema-inconsistent
information. The von Restorff effect can be seen as a bridge
between work in schema research that relies on preexisting knowl-
edge structures and work in category learning in which expecta-
tions are developed only after a number of learning trials.

Modulating the advantage of inconsistent information. Exper-
iments in the tradition of von Restorff (1933) and schema research
indicate a memory advantage for items that deviate from a salient
regularity. One question to consider is whether the strength of the
regularity modulates the advantage for deviant items. The strength
of the regularity can be manipulated by varying the proportion of
items that conform to the regularity. Koffka (1935) reported that
when there were more anomalous items in a list, the memory
advantage for those items was smaller. Similarly, Rojahn and
Pettigrew’s (1992) meta-analysis suggests that the memory advan-
tage for the schema-inconsistent items becomes weaker as the
proportion of the schema-inconsistent items becomes larger,
though the effect was not universal. For example, Pezdek et al.
(1989) found that the proportion of inconsistent items had no effect
on memory for inconsistent items. One possible explanation for
null effects in schema research is that schemas are well learned
prior to the experiment and therefore may not be as sensitive to the
frequency manipulations experienced in brief laboratory studies.

Processing markers. Inconsistent items may be treated differ-
ently from consistent items because inconsistent items are more
difficult to process than consistent items (cf., Fabiani & Donchin,
1995; Graesser, 1981). In support of this notion, inconsistent items
tend to receive more study time (Stern, Marrs, Millar, & Cole,
1984). This processing account suggests that inconsistent items
will not be remembered better than consistent items when study
time is limited. In general, people spend more time on difficult
study items than on easily mastered items, but this pattern can
reverse when study time is limited (Metcalfe, 2002; Thiede &
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Dunlosky, 1999). Though deeper processing (cf., Craik & Tulving,
1975) does not necessarily imply increased study time, it seems
plausible that if more complete or deeper processing underlies the
schema-inconsistent advantage under self-paced study conditions,
then limited study time conditions should reduce the memory
advantage for schema-inconsistent information. Indeed, people
under cognitive load are unable to fully encode schema-
inconsistent information and schema-consistent information is bet-
ter remembered (Brewer & Treyens, 1981; Rojahn & Pettigrew,
1992; Sherman & Frost, 2000). However, when conditions allow
for thorough encoding, the memory advantage for schema-
inconsistent information is observed.

Related Work in Category Learning

Although the literature on the topic is not as extensive, findings
from the category learning research parallel those from the mem-
ory research in regards to processing consistent and inconsistent
information. In a category learning study involving prior knowl-
edge, Heit (1998) found that subjects weighted inconsistent infor-
mation more than consistent information when making probability
judgments. Furthermore, Heit found that the advantage of incon-
sistent information was eliminated under speeded study conditions.
Unfortunately, most work in the category learning literature is
difficult to directly relate to work in the memory literatures as the
majority of category learning studies have focused on the difficulty
(measured by error rate) of acquiring different category structures
(i.e., assignments of stimuli to artificial categories) in the absence
of prior knowledge. Thus, the vast majority of studies are not
relevant to the current discussion (e.g., Shepard, Hovland, &
Jenkins, 1961).

However, research in category learning with prior knowledge
can be related to work in schemas. Prior knowledge (somewhat
akin to a schema) can assist category learning by making it easier
to integrate information about category members (Murphy & Al-
lopenna, 1994). For example, if all the members of Category A
have features consistent with a library schema (e.g., books, silent,
and desks) and all the members of Category B have features
consistent with a concert schema (e.g., bands, alcohol, and loud
music), then learning to discriminate between Category A and
Category B members would be easier than if the features that
predicted A and B were unrelated. Likewise, when expectations
about category structures are realized, learning is more efficient
(Pazzani, 1991; Wattenmaker et al., 1986).

Unfortunately, these and other studies involving prior knowl-
edge do not directly examine the weighting of consistent and
inconsistent information and how recognition memory is affected.
These category learning studies do suggest that inconsistent items
may require greater attention and may therefore be distinct in
memory. In accord with this interpretation, Spalding and Murphy
(1996, Experiment 5) found that subjects were unlikely to aggre-
gate items from the same category into one group when category
items contained inconsistent information. Subjects treated category
items as forming a coherent group only when instructions encour-
aged subjects to discount inconsistent information by stating that
there were mistakes in the printing of the stimuli.

Unlike the previously mentioned category learning studies,
Palmeri and Nosofsky’s (1995) studies bear directly on how con-
sistent and inconsistent information is encoded. In their studies,

subjects learned to classify geometric stimuli into two contrasting
categories. The majority of items could be classified by a simple
rule (e.g., large items are in Category A, whereas small items are
in Category B), while two items were inconsistent with the rule
(e.g., a large item belonging to Category B). Items that followed
the rule are analogous to schema-consistent information, whereas
items that violated the rule are analogous to schema-inconsistent
information. Following learning, subjects completed a recognition-
rating phase consisting of studied items and novel items con-
structed by forming novel combinations of the studied items’
features. The main finding was that recognition was best for the
two rule-violating items. This finding parallels the advantage for
schema-inconsistent items found in the memory literatures.

The Palmeri and Nosofsky (1995) studies have a number of
strengths relative to schema and stereotype studies. One strength is
that the recognition advantage for inconsistent items clearly arises
from stimulus encoding and not from retrieval strategies. For
example, providing a category label would not improve subjects’
ability to recognize a stimulus item. This is important because
Anderson and Pichert (1978) have demonstrated that retrieval
strategies, such as activating a schema by shifting one’s perspec-
tive at test, can aid retrieval of studied information. Furthermore,
the results are highly interpretable because the stimuli were simple
geometric figures that could be counterbalanced and had no prior
meaning for subjects.

Palmeri and Nosofsky (1995) modeled their data with the con-
text model (Medin & Schaffer, 1978) and the RULEX (rule-plus-
exception) model of category learning (Nosofsky, Palmeri, &
McKinley, 1994). The context model is an exemplar model that
stores every studied item in memory as a separate trace. Items are
represented as vectors of features and are probabilistically classi-
fied into Category A or Category B, depending on the item’s
relative similarity to all exemplars belonging to Categories A and
B. The likelihood of recognizing a stimulus as a studied item is
proportional to the sum of similarity to all exemplars (from both
Categories A and B). The context model alone cannot account for
Palmeri and Nosofsky’s data, as it predicts no recognition advan-
tage for rule-violating items. This failure arises because the ex-
ceptions share the same similarity relations with other items in
memory as rule-following items do. Exceptions are distinguished
from rule-following items because their category assignment runs
counter to the rule and, according to the context model’s account
of recognition, this reversal is not germane to recognition.

Palmeri and Nosofsky (1995) had more success with the
RULEX model. RULEX is a hypothesis-testing model of category
learning that constructs rules and stores exceptions to the rules.
Rule-following items are not individually stored (as they are in the
exemplar model), but rather are captured by the rule. Information
about inconsistent items is explicitly stored. The likelihood of
recognizing a test item is determined by summing the response
from RULEX’s rule system (because of the design of Palmeri and
Nosofsky’s studies, the response is uniform across all items) and
the response from the items in the exception store. The storage of
exception information allows RULEX to predict a memory advan-
tage for rule-inconsistent information. However, RULEX under-
predicts the recognition advantage of rule-following studied items
relative to novel items because neither class of items is similar to
items in the exception store. Therefore, Palmeri and Nosofsky
created a combined model that generates recognition responses by
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summing the responses of RULEX and the context model (which
is sensitive to the difference between studied rule-following items
and novel items). This combined model did a good job of account-
ing for their recognition data.

The inability of RULEX alone to account for the difference in
recognition between rule-following and novel items suggests that
humans store more than a rule to represent rule-following items.
Rules encode little information about rule-following items. Even
when a rule is explicitly applied to a novel item, humans are still
somewhat sensitive to the similarity between the novel item and
previously encountered examples (Allen & Brooks, 1991). Anal-
ogously, Brooks, Norman, and Allen (1991) demonstrate a ten-
dency to rely on familiar instantiations of abstract features in
medical diagnosis. One alternative to a strict rule account is that
rule-following items are represented by more schemalike struc-
tures such as a cluster.

The SUSTAIN model (the supervised and unsupervised strati-
fied adaptive incremental network model; Love & Medin, 1998;
Love, Medin, & Gureckis, 2004) of human category learning
proposes such cluster representations. SUSTAIN represents cate-
gories by one or more clusters. A stimulus is assigned to the cluster
it is most similar to (i.e., closest in multidimensional representa-
tional space). SUSTAIN starts with one cluster centered on the
first stimulus item encountered. New clusters are recruited in
response to surprising events, such as a prediction error in super-
vised learning or encountering a stimulus that is not similar to any
existing cluster in unsupervised learning. Clusters compete to
characterize a stimulus with only the most activated (i.e., most
similar) prevailing. The response of the winning cluster is attenu-
ated by competition with other clusters. Learning rules update the
dominant cluster’s position and connection weights. Attention is
also adjusted so that the most predictive stimulus dimensions
(across all clusters) are the most influential in determining cluster
activations. Somewhat analogous to the context model and mem-
ory models (e.g., Gillund & Shiffrin, 1984; Hintzman, 1986),
recognition is modeled by summing the output of all clusters.
SUSTAIN’s notion of similarity evolves over time according to
the clusters it develops and how it allocates attention.

Rulelike behavior in SUSTAIN is modeled through the devel-
opment of rule-consistent clusters and the shifting of attention to
the rule-relevant stimulus dimension. Unlike RULEX, these clus-
ters encode enough information about the rule-irrelevant dimen-
sions to allow SUSTAIN to predict better recognition for rule-
following items than for novel items. Like RULEX, SUSTAIN
predicts a recognition advantage for rule-violating items. When a
rule-violating item elicits a prediction error (a surprising event),
SUSTAIN recruits an additional cluster to encode the item. Al-
though rule-following items tend to cluster with one another, each
rule-violating item will be isolated in its own cluster. This differ-
ential storage (somewhat analogous to RULEX’s exception store)
makes rule-violating items more distinctive in memory.

RULEX’s and SUSTAIN’s treatment of rule-following and
rule-violating items parallels findings from the schema research
about how consistent and inconsistent information is processed. In
particular, RULEX and SUSTAIN are in accord with findings that
suggest that people process schema-inconsistent information more
deeply and at a greater level of detail. For example, Loftus and
Mackworth (1978) found that people fixate more often and longer
on schema-inconsistent information than on schema-consistent

information. Missing features, new features, or physical changes in
the schema-consistent items are rarely noticed, whereas these
changes in the schema-inconsistent items are almost always no-
ticed (Friedman, 1979; Goodman, 1980; Heider, 1946; Schank &
Abelson, 1977; Sentis & Burnstein, 1979).

Both RULEX and SUSTAIN are in accord with interpretations
of the von Restorff (1933) effect that attribute the memory advan-
tage of deviant items to differential attention at encoding (e.g.,
Green, 1956; Jenkins & Postman, 1948). However, RULEX is at
odds with more recent work that demonstrates that deviant items
are remembered better, even when presented at the beginning of a
study list (e.g., Dunlosky, Hunt, & Clark, 2000; Hunt & Lamb,
2001). SUSTAIN can predict an isolation effect for items pre-
sented at the beginning of a list because a deviant item can become
distinctive by clustering other items subsequent to the presentation
of the deviant item.

Points of Agreement and Contention

Following the schema literature (e.g., Rojahn & Pettigrew,
1992), we propose that items are better remembered to the extent
that they are differentiated from a salient knowledge structure
during learning. Although RULEX predicts better memory for
rule-violating items, it does not predict that the storage of deviant
items is affected by the strength of the rule or regularity. One way
to manipulate the strength or saliency of a rule is frequency.
RULEX posits that actual rules underlie rule-governed behavior.
Insensitivity to frequency information is a central property of rules
(Pinker, 1991; E. E. Smith, Langston, & Nisbett, 1992). RULEX
cannot predict better memory for rule-violating items that violate
more frequently encountered rules. In contrast to RULEX, we
hypothesize that exceptions differentiated from a rule that many
items follow should be better remembered than exceptions differ-
entiated from a rule that few items follow.

SUSTAIN’s cluster-based representations are in the spirit of the
schema literature. SUSTAIN represents an imperfect rule with one
or more clusters, with attention primarily shifted to the rule-
relevant dimension. SUSTAIN may be able to predict enhanced
memory for items that violate stronger (i.e., more frequent) regu-
larities by recruiting more clusters to represent more salient knowl-
edge structures. Thus, deviant items that violate more salient
regularities would be differentiated from a number of highly
similar clusters, which would confer a recognition advantage.
Experiment 1 tests whether the saliency of knowledge structures
affects recognition of deviant items as it does in the memory
literatures. The ability of the models to account for the data is also
evaluated.

One difference between the memory literatures and the category
learning literature is the category learning literature’s focus on
supervised learning. In fact, RULEX’s formalization prevents it
from being applied to situations in which feedback is absent.
Experiment 2 examines whether an item that deviates from a
salient knowledge structure is better remembered without feedback
associated with it. Following the schema literature and experi-
ments in the tradition of von Restorff (1933), we predict that
feedback is not necessary to induce an advantage for deviant items.
SUSTAIN is consistent with this prediction.

In supervised learning situations, inconsistent items tend to be
remembered best and result in the most errors during learning.
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RULEX and SUSTAIN, in accord with the memory literature,
suggest that inconsistent items are remembered best because they
violate an existing knowledge structure, not because they result in
more errors. In RULEX, inconsistent items violate an existing rule
and are preferentially stored as exceptions. Similarly, prediction
errors in SUSTAIN occur when an item runs counter to the
dominant cluster, which leads to a new cluster being recruited to
encode the inconsistent item. Experiment 3 explores the role of
errors in a learning task in which there are no salient rule struc-
tures. We predict, following RULEX, SUSTAIN, and the memory
literatures, that the effect of errors on memory will be mediated
through knowledge structures. In the case of Experiment 3, we
predict that humans will impose structure on the relatively unstruc-
tured categories. Another potential mediator of the effect of errors
on memory is study time. As reviewed previously, difficult items
tend to receive more study time.

All of our predictions for the three category learning studies
follow from work in the memory literatures. Many of these pre-
dictions overlap with category learning models, such as SUSTAIN
and RULEX. In contrast, all of our predictions run counter to
exemplar models. Exemplar models enjoy wide spread acceptance
in the category learning community (Kruschke, 1992; Medin &
Schaffer, 1978; Nosofsky, 1986). Unlike the schema literature,
exemplar models leave no role for knowledge structures to direct
encoding. Before describing the three experiments, the results, and
the model fits, we consider the fit of the context model, SUSTAIN,
and RULEX to Palmeri and Nosofsky’s (1995) data.

Model-Based Accounts of Palmeri and Nosofsky (1995)

In this section, the context model, RULEX, and SUSTAIN are
fit to the data from Palmeri and Nosofsky’s (1995) Experiment 3.
These fits are intended to test our intuitions about the models and
to establish the modeling methods used throughout this article. We
predict that RULEX and SUSTAIN will predict enhanced recog-
nition for rule-violating items, but the context model will not. The
formal descriptions of the models are included in the Appendix, as
are the procedures used to obtain model fits. The general philos-
ophy of the model fits was to match the procedures applied to
human subjects and models as closely as possible. For instance, the
same trial randomization procedures and training criteria were
used in the original study and model simulations. In the Palmeri
and Nosofsky study, only the recognition data from human sub-
jects completing two consecutive error-free blocks of classification
learning (prior to the recognition phase) were included in analyses.
This same inclusion criterion was applied to model simulations.

Models were fit to the mean recognition ratings provided by
human subjects. Recognition ratings were aggregated by item type.
As can be seen in Table 1, Items A1 and B1 violate an imperfect
rule on the first stimulus dimension. These two items are referred
to as exceptions. Items A8 and B8 are referred to as prototypes
because they follow the imperfect rule and display the modal
values of their categories. The remaining items appearing in the
learning phase are referred to as rule-following items. Items N1–
N16 are novel items that served as foils in the recognition phase.
These items are grouped according to whether they are similar to
one of the exceptions. The basic finding from Palmeri and Nosof-
sky (1995) is that exception items receive the highest recognition
ratings, followed by other items seen in the learning phase, fol-

lowed by novel items. The human data and model fits are shown
in Table 2.

SUSTAIN (four parameters, root mean squared deviation
[RMSD] � 0.087) correctly predicts the basic findings. RULEX
(five parameters, RMSD � 0.376) correctly predicts the advantage
of rule-violating items over rule-following items, but fails to
predict an advantage for rule-following items over novel items.
The context model (parameter invariant, RMSD � 0.449) com-
plements RULEX by accounting for the overall advantage of
studied items while failing to account for enhanced recognition for
rule-violating items. Thus, the combined model (six parameters,
RMSD � 0.144), which pools the outputs of RULEX and the
context model, can account for the basic findings. Table 2 details
the models’ predictions.

RULEX and SUSTAIN can account for the recognition advan-
tage of inconsistent items (i.e., rule-violating items) over consis-
tent items (i.e., rule-following items) because these models posit
knowledge structures that can confer an encoding advantage to
deviant items. RULEX forms rules and explicitly stores items that
violate the rules in a separate store. SUSTAIN clusters rule-
following items and stores rule-violating items, which violate
rule-following clusters’ expectations, in specifically tuned clusters.

The context model is only sensitive to pairwise similarity rela-
tions and does not posit knowledge structures that allow for
preferential encoding of rule-violating items. For Palmeri and
Nosofsky’s (1995) design, the context model’s predictions do not
depend on parameter settings because each studied item shares the
same similarity relations with other items. As in Palmeri and
Nosofsky’s fit, the context model was unable to predict the rec-
ognition advantage for the exception items over the rule-following
items, although it captured the higher recognition ratings for the
studied items than for the novel items. RULEX cannot predict this
general advantage for studied items because recognition in
RULEX is driven by its exception store and this information does

Table 1
The Abstract Category Structures Used in Palmeri and
Nosofsky’s (1995) Experiment 3

Learning item Dimension value Novel item Dimension value

3 A1 21111 N1 12221
A2 11122 N2 12212
A3 12211 N3 12122
A4 11221 N4 12111
A5 12112 N5 11222
A6 11212 N6 11211
A7 12121 N7 11121
A8 11111 N8 11112

3 B1 12222 N9 22221
B2 22211 N10 22212
B3 21122 N11 22122
B4 22112 N12 22111
B5 21221 N13 21222
B6 22121 N14 21211
B7 21212 N15 21121
B8 22222 N16 21112

Note. Stimuli consist of five binary-valued dimensions. There is an
imperfect rule on the first dimension, which Items A1 and B1 violate
(indicated by the arrows). A � Category A; B � Category B; N � novel
item.
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not discriminate between rule-following and novel items. In con-
trast, SUSTAIN’s clusters retain the necessary information to
support the recognition advantage for rule-following items.

Experiment 1

Experiment 1 tests whether recognition is better for items that
violate more salient knowledge structures as in the memory liter-
atures (Koffka, 1935; Rojahn & Pettigrew, 1992). Saliency is
operationalized as the number of items that follow a rule. The
category structures used in Experiment 1 are similar to those used
by Palmeri and Nosofsky (1995). The key difference is that the
number of items following the Category A and Category B rules is
unequal (see Table 3).

Following the memory literatures, we predict that the exception
in the smaller category (i.e., the exception that violates the more
frequent rule) will be remembered better than the exception in the
larger category. The classification learning procedures lead to
predicting the effect in this direction. In classification learning,
subjects reason from stimulus values to category membership. As
can be seen in Table 3, subjects will entertain the rules “If value 1
on the first dimension, then Category A” and “If value 2 on the
first dimension, then Category B.” The Category B exception
violates the Category A rule, whereas the Category A exception
violates the Category B rule. Because the Category A rule is more
frequent, we predict enhanced memory for the Category B
exception.

Current models should have trouble predicting this pattern of
findings. RULEX proposes that actual rules underlie rule-governed
behavior and thus should be unable to account for rule frequency
effects. SUSTAIN may be able to predict better memory for the
exception in the smaller category if more clusters are recruited to
represent the imperfect rule for the larger category than for the
smaller category. In accord with the schema literature, the cluster
encoding the exception in the smaller category would be differen-
tiated from a stronger regularity than the cluster encoding the
exception in the larger category. The context model should be
unable to account for the predicted results because it does not
provide a role for knowledge structures in encoding rule-consistent
and rule-inconsistent information.

Method

Subjects. Eighty-two University of Texas undergraduates participated
for course credit.

Materials. The experiment was run on Pentium III computers operat-
ing in DOS. Data were collected using an in-house, real-time data collec-
tion system. The monitors had 15-in. CRT color displays and a refresh rate
of 16.67 ms.

The learning phase stimuli were geometric figures that varied in the
following five binary valued dimensions: size (small or large), color (blue
or purple), border (yellow or white), texture (smooth or dotted), and
diagonal cross (present or absent). The five dimensions were mapped
(randomly assigned for each subject) onto the logical structure shown in
Table 3. The assignment of dimension values was also random for each
subject. For example, for some subjects the value 2 on the size dimension
signified a large figure, for others it signified a small figure. The five
stimulus dimensions are all equally salient and independent (as verified by
multidimensional scaling of pairwise similarity ratings—see http://
love.psy.utexas.edu/stimuli for details and to download the stimuli).

Design and overview. Subjects completed a learning phase consisting
of classification learning trials of the items under the heading Learning
item in Table 3. Subjects completed 10 blocks of learning trials. A block
is the presentation of each learning item in a random order. After the
learning phase, subjects completed a filler phase consisting of three arith-
metic problems to prevent rehearsal of information from the learning
phase. Then, subjects completed a recognition phase consisting of two-
alternative, forced-choice (2AFC) recognition judgments involving items
from the learning phase and novel stimulus items. Finally, subjects com-
pleted a transfer phase in which they classified items presented in the
recognition phase without corrective feedback. The transfer phase allows
for evaluation of subjects’ learning strategies through examination of how
they extend their knowledge to novel items.

The variables item type (rule following or exception) and category size
(small or large) were factorially combined. The rule-following items
(A2–A9 and B2–B5) followed an imperfect category rule (see Table 3 for
the imperfect category rule on the first dimension). Following Medin and
Smith (1981) and Palmeri and Nosofsky’s (1995) Experiment 1, subjects
were provided with a hint to attend to the first dimension. There were two
exception items (A1 and B1), one from each category. One category
contained nine members (the large category), and the other category
contained five members (the small category).

The recognition phase involved forced-choice judgments on 50 pairs of
stimuli presented in a random order. Each pair consisted of an item from

Table 2
Human Recognition Ratings Observed in Palmeri and
Nosofsky’s (1995) Experiment 3 and Recognition Ratings
Predicted by the Models

Item Obs Con RUL C � R SUS

Exc 6.92 6.39 7.10 6.94 6.88
Pro 6.18 6.39 5.67 6.04 6.16
Rul 5.74 6.39 5.49 5.88 5.88
Sim 5.23 5.13 5.67 5.36 5.24
Dis 5.36 5.13 5.49 5.20 5.26

Note. Item types included exceptions (Exc), prototypes (Pro), studied
rule-following items (Rul), novel items similar to an exception (Sim), and
other novel items (Dis). Obs, Con, RUL, C � R, and SUS stand for
observed data, context model, RULEX (rule-plus-exception model), com-
bined model, and SUSTAIN (supervised and unsupervised stratified adap-
tive incremental network model), respectively.

Table 3
The Abstract Category Structures Used in Experiment 1

Learning item Dimension value Novel item Dimension value

3 A1 21112 N1 11221
A2 12122 N2 12112
A3 11211 N3 12221
A4 12211 N4 12212
A5 11122 N5 12222
A6 12111 N6 21221
A7 11222 N7 22112
A8 11212 N8 22221
A9 12121 N9 22212

3 B1 11121 N10 22222
B2 22122
B3 21211
B4 22211
B5 21122

Note. A � Category A; B � Category B; N � novel item. There is an
imperfect rule on the first dimension, which Items A1 and B1 violate
(indicated by the arrows).
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the learning phase and a novel item. Twenty items, 10 studied and 10
novel, were used. The 10 studied items were 5 items from Category A
(A1–A5) and 5 from Category B (B1–B5). The 10 novel items are dis-
played under Novel item in Table 3. Because items with value 1 on the first
dimension were more frequent than items with value 2 during the learning
phase, the false-alarm rate for recognizing the items with value 1 on the
first dimension would be higher than that for recognizing the items with
value 2 when the items are judged in isolation. To avoid excessive false
alarms, items were paired to match on this dimension. The 5 studied items
with value 1 on the first dimension (i.e., A2–A5 and B1) were paired with
each of the 5 novel items with value 1 on the first dimension (i.e., N1–N5),
which resulted in 25 pairs. Another set of 25 pairs was created in the same
manner using the items with value 2 on the first dimension.

In the transfer phase, subjects classified the same 20 stimuli used in the
recognition phase without corrective feedback. Subjects completed two
blocks of transfer trials.

Procedure. Instructions for the learning, filler, recognition, and trans-
fer phases were displayed on the monitor at the start of each phase. The
background color was black.

On each trial in the learning phase, one stimulus appeared at the center
of the monitor and the text “Category A or B?” was displayed above the
stimulus. In addition, a hint to attend to the rule-relevant dimension was
presented. For example, “Look whether the size is small or large” appeared
above the text “Category A or B?” when size was the rule-relevant
dimension. The instruction stated that this strategy may not work all the
time. Subjects indicated their category membership judgment by pressing
the A or B key. After subjects responded, the text and the hint above the
stimulus were replaced with visual (e.g., “Right! The correct answer is A”
or “Wrong! The correct answer is B”) and auditory corrective feedback
(i.e., a low-pitch tone for errors and a high-pitch tone for correct re-
sponses). The stimulus and the visual feedback were displayed for 2,501
ms (150 screen refreshes) after subjects responded. A blank screen was
then displayed for 834 ms (50 screen refreshes) and the next trial began.

After completing the learning phase, subjects were presented with a
series of three arithmetic problems. Each problem consisted of two integers
(randomly generated between 10 and 49) presented side by side (e.g., 22 �
34 � ?); the problem remained displayed until the subjects responded.
Subjects received both auditory and visual feedback indicating whether
they added the numbers correctly.

In the recognition phase, a pair of stimuli was presented side by side on
each trial. Each pair consisted of a learning item and a novel item, as
described earlier. The text “Old: left (Q) or right (P)?” was displayed above
the stimuli. Subjects pressed the Q key (on the left side of the keyboard) to
indicate the left item was old (appeared in the learning phase) and pressed
the P key (on the right side of the keyboard) to indicate that the right item
was old. For each pair, the studied and novel items were randomly assigned
to the left or to the right position. No corrective feedback was given to
subjects. After subjects responded, the text “Thank you” appeared below
the stimulus and a high-pitch tone sounded. The stimulus and the text
“Thank you” were displayed for 2,501 ms after subjects responded. A
blank screen was then displayed for 834 ms and the next trial began.

Experiment 1 featured a transfer phase following the recognition phase.
The procedure for the transfer phase was similar to that for the learning
phase except that no hint or feedback was provided. After participants
responded either “A” or “B,” a high-pitch tone sounded and the text
“Thank you” was displayed below the stimulus.

Results

One subject did not perform above chance (i.e., 50%) in the
learning phase and was excluded from further analysis.1 Data from
the learning, recognition, and transfer phases were analyzed, al-
though the data of primary interest were from the recognition

phase. Table 4 displays subjects’ mean accuracies in the learning,
recognition, and transfer phases.

Learning phase. A factorial Category Size (small or large) �
Item Type (rule following or exception) analysis of variance
(ANOVA) was performed on the accuracy data from the learning
phase. Subjects were more accurate (.69 vs. .65) for the large-
category items than for the small-category items, F(1, 80) � 7.37,
MSE � 0.02, p � .01. The effect size, measured by partial �2 (for
significant ANOVA results for all experiments), was .08, suggest-
ing that the category size by itself accounted for only 8% of the
overall (effect plus error) variance. As predicted, subjects were
less accurate (.45 vs. .90) on the exceptions than on the rule-
following items, F(1, 80) � 319.49, MSE � 0.05, p � .001, with
partial �2 � .80. The interaction did not reach significance, F(1,
80) � 1.75, MSE � 0.02, p � .19. The difference in subjects’
accuracy between the small-category exception and the large-
category exception (see Table 4) was not significant (t � 1).
However, the difference in subjects’ accuracy between the small-
category rule-following items and the large-category rule-
following items was significant, t(80) � 5.82, p � .001.

Unbeknownst to subjects, response time was collected in the
learning phase. A factorial Category Size � Item Type ANOVA
was performed on response time (collapsed across accurate and
inaccurate responses). Though not predicted, subjects spent less
time (1,872 ms vs. 1,980 ms) considering items in the small
category than items in the large category, F(1, 80) � 5.43, MSE �
172,224, p � .05, with partial �2 � .06. As predicted, the excep-
tions resulted in greater response times (2,020 ms vs. 1,824 ms)
than the rule-following items, F(1, 80) � 14.65, MSE � 195,768,
p � .001, with partial �2 � .15. The interaction between category
size and item type was significant, F(1, 80) � 14.82, MSE �
340,595, p � .001, with partial �2 � .16. For the exception items,
response time was 358 ms faster when belonging to the small
category than to the large category (1,841 ms vs. 2,199 ms). In
contrast, response time for the rule-following items was 142 ms
faster when belonging to the large category than to the small
category (1,761 ms vs. 1,903 ms). The interaction indicates that
items displaying the more frequent value on the first dimension
had faster response times. Subjects spent significantly more time
on the exception in the large category than on the exception in the

1 Including such subjects does not change the pattern of results in any
experiment.

Table 4
Mean Accuracies in the Learning, Recognition, and Transfer
Phases

Item Learning Recognition Transfer

Exc S .44 .87 .64
Exc L .46 .79 .56
Rul S .86 .69 .85
Rul L .92 .70 .86

Note. Item types included the exception from the small category (Exc S),
the exception from the large category (Exc L), the rule-following items
from the small category (Rul S), and the rule-following items from the
large category (Rul L).
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small category, t(80) � 3.48, p � .001. Response time was greater
for rule-following items in the small category than for rule-
following items in the large category, t(80) � 3.07, p � .01.

Recognition phase. The recognition results are shown in Fig-
ure 1. A factorial Category Size � Item Type ANOVA was
performed on 2AFC recognition accuracy data. Subjects were
more accurate (.78 vs. .74) with items in the small category than
with items in the large category, F(1, 80) � 5.28, MSE � 0.02,
p � .05, with partial �2 � .06. As predicted, the exceptions were
better remembered (.83 vs. .70) than the rule-following items, F(1,
80) � 39.31, MSE � 0.04, p � .001, with partial �2 � .33. As
predicted, there was a significant Category Size � Item Type
interaction, F(1, 80) � 7.25, MSE � 0.02, p � .01, with partial
�2 � .08. For the exception items, recognition was 8% better for
the small category than for the large category; for rule-following
items, recognition was 1% worse for the small category than for
the large category (see Table 4). In accord with our main predic-
tion, subjects remembered the exception from the small category
better than the exception from the large category, t(80) � 2.72,
p � .01. The difference between rule-following items from the
small and large categories was not significant (t � 1).

Transfer phase. For the purposes of analyses, novel items
were considered to be in the category for which they satisfied the
imperfect rule. A factorial Category Size � Item Type ANOVA
was performed on transfer accuracy data. Subjects were not sig-
nificantly more accurate (.74 vs. .71) for small-category items than
for large-category items, F(1, 80) � 2.15, MSE � 0.04, p � .15.
As predicted, the exceptions resulted in lower accuracy (.60 vs.
.86) than the rule-following items, F(1, 80) � 28.36, MSE � 0.19,
p � .001, with partial �2 � .26. The interaction between category
size and item type approached significance, F(1, 80) � 3.28,
MSE � 0.04, p � .07. For the exception items, accuracy was 8%
better for the small category than for the large category; for
rule-following items, accuracy was 1% worse for the small cate-

gory than for the large category (see Table 4). The difference in
subjects’ accuracy between the small-category exception and the
large-category exception approached significance, t(80) � 1.75,
p � .08. There was no significant difference in subjects’ accuracy
between the small-category and the large-category rule-following
items (t � 1).

Model Analyses

As predicted, people remembered the exception in the smaller
category better than the exception in the larger category. As the fits
shown in Table 5 indicate, this pattern of results is problematic for
the context model (two parameters, RMSD � 0.033), RULEX (six
parameters, RMSD � 0.053), and the combined model (eight
parameters, RMSD � 0.033). SUSTAIN (four parameters,
RMSD � 0.027) successfully accounts for the pattern of results.

The context model, RULEX, and the combined model all pre-
dicted virtually equal recognition for both exceptions. The context
model was able to predict better recognition for exceptions overall
because of its multiplicative rule for calculating similarity. Al-
though all items had an equal number of matches on average with
other items, matches for exceptions were concentrated among
fewer items, which is favored by the context model’s multiplica-
tive similarity rule. As in the Palmeri and Nosofsky (1995) simu-
lation, RULEX formed a rule on the first dimension and stored the
two exceptions.

SUSTAIN captures the pattern of results, and its predictions lie
within the error bars for the human data shown in Figure 1.
SUSTAIN recruited a cluster for each exception. Of importance,
SUSTAIN recruited more clusters to encode the rule-following
items from the larger category than it recruited to encode the
rule-following items from the smaller category. SUSTAIN tends to
cluster together highly similar items from the same category.
When SUSTAIN tries to cluster together highly similar items from
competing categories, a prediction error occurs (i.e., a surprising
event) and a new cluster is recruited. In the simulations of Exper-
iment 1, the exception clusters brought about such errors by
attracting rule-following items from the opposing category. Be-
cause there were more rule-following items in the larger category,
there were more opportunities for such errors involving the excep-
tion from the small category to occur. As a result, a greater number
of rule-following clusters for the large category were recruited.
These clusters formed a highly contrastive backdrop for the ex-
ception in the smaller category and allowed SUSTAIN to predict
enhanced recognition of that item.

Discussion

The results from Experiment 1 parallel those from the memory
research. Exception items (akin to schema-inconsistent informa-
tion) that were differentiated from a salient knowledge structure
were remembered best. The exception in the smaller category that
violated a more frequent (i.e., salient) regularity was remembered
better than the exception in the larger category. RULEX and the
context model could not account for the results, whereas
SUSTAIN could by recruiting more clusters to represent rule-
following items from the larger category, which created a strong
backdrop for the exception in the smaller category to be recog-
nized against. The results of Experiment 1 and the success of

Figure 1. Mean accuracies in the recognition phase of Experiment 1 are
shown along with 95% within-subject confidence intervals (see Loftus &
Masson, 1994). Error bars represent standard errors of the mean. Exc S �
exception of the small category; Exc L � the exception of the large
category; Rul S � the rule-following items of the small category; Rul L �
the rule-following items of the large category; 2AFC � two-alternative
forced choice.
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SUSTAIN suggest that rules might be represented by cluster or
schemalike structures, as opposed to actual rules.

Although RULEX failed to account for the recognition advan-
tage of the exception in the smaller category, its simulations were
theoretically illuminating. RULEX attempts to store more infor-
mation about an exception when the exception is more confusable
with opposing rule-following items. Thus, RULEX can be sensi-
tive to the diversity of items in the opposing category. In Exper-
iment 1 (see Table 3), rule-following items in the larger category
were both more frequent and more diverse in their combination of
feature values than rule-following items in the smaller category.

This analysis indicates that there are two senses of “more.”
Greater frequency corresponds to more rule-following tokens,
whereas greater diversity corresponds to more rule-following types
(cf. Barsalou, Huttenlocher, & Lamberts, 1998). Like Experiment
1, these two notions of more have perfectly co-occurred in the
memory literatures. Although Experiment 1 was motivated by
work in the memory literatures, perhaps our analysis can illumi-
nate future schema research. Preliminary results from category
learning experiments suggest that when either frequency or diver-
sity is held constant, there is an independent effect of the other on
the recognition of deviant items (Love & Sakamoto, 2003).

We have focused on structural explanations based on differen-
tiation to explain the recognition memory advantage of the excep-
tion in the smaller category. Other explanations based on study
time or error rate are more appropriately considered correlated
measures rather than true explanations. Nevertheless, these expla-
nations fall short in Experiment 1. Study time was greater for the
exception in the larger category than for the exception in the
smaller category. Error rate was also not predictive of the recog-
nition advantage of the exception from the smaller category over
the exception from the larger category. However, as in Palmeri and
Nosofsky (1995), both exceptions did result in more errors than
rule-following items and were remembered better.

In Experiment 2, we examined whether structure violation by
itself can lead to memory advantage for deviant items by utilizing
an unsupervised category learning paradigm (cf. Ashby, Queller,
& Berretty, 1999; Love, 2003b). Clearly, errors are not relevant for
explaining the outcome of Experiment 2 as no corrective feedback
is provided in unsupervised learning.

Experiment 2

In contrast to Experiment 1, subjects in Experiment 2 learned
about members of a single category in an unsupervised fashion and
imposed their own organization on the stimulus items (cf. Ahn &
Medin, 1992; Medin, Wattenmaker, & Hampson, 1987). In the
learning phase, subjects viewed members of Category A and rated
their typicality. Following the learning phase, subjects’ ability to
recognize studied stimuli was measured.

Another key difference between Experiments 1 and 2 is that the
stimulus dimensions are intercorrelated in Experiment 2. Across
dimensions, stimulus value 2 tends to co-occur with value 2 (see
Table 6). This rich structure is in accord with the structure of
natural categories (Rosch & Mervis, 1975) and the idea that a
schema is a set of related expectations.

Adopting this analysis, Items A2–A6 in Table 6 can be viewed
as schema consistent, whereas Item A1 can be viewed as schema
inconsistent. No single rule defines the schema. The schema-
consistent items form a cluster in which the deviant Item A1 is not
easily accommodated. Therefore, we predict that the deviant item
will be better recognized than the schema-consistent items. Simi-
larly, the improved memory for the deviant item could be under-
stood as a von Restorff (1933) effect in which the isolated item is
better remembered. Critically, Item A1 is only isolated as a result
of learning to relate the other items to one another in an unsuper-
vised fashion. The novel items (N1–N6 in Table 6), which served
as foils in the recognition phase, follow the same frequency dis-
tribution as the studied items. Across the novel and studied item
stimulus sets, each stimulus dimension displays the 1 value two
times and the 2 value four times.

If subjects simply formed a prototype (i.e., an all inclusive
schema) during the learning phase, recognition of the deviant item
should be worse than the other studied items because the deviant
item would not be familiar when compared with the stored proto-
type. In fact, the deviant item would be less familiar than the novel
items. Exemplar-based approaches make similar predictions based
on the sum of item similarities. In contrast, SUSTAIN’s predic-
tions are aligned with the schema literature. SUSTAIN predicts
that schema-consistent Items A2–A6 will form one cluster,
whereas deviant Item A1 will be stored in its own cluster.
SUSTAIN predicts that isolated Item A1 will be remembered best.

Method

Subjects. Fifty-two University of Texas undergraduates participated
for course credit.

Table 5
Two-Alternative, Forced-Choice Recognition Performances
Observed in Experiment 1 (With 95% Confidence Intervals) and
Predicted by the Models

Item Obs Con RUL C � R SUS

Exc S .87 � .03 .83a .86 .83a .90
Exc L .79 � .03 .83a .85a .83a .77
Rul S .69 � .03 .70 .65a .69 .71
Rul L .70 � .03 .70 .65a .69 .67

Note. Item types included the exception from the small category (Exc S),
the exception from the large category (Exc L), the rule-following items
from the small category (Rul S), and the rule-following items from the
large category (Rul L). Obs, Con, RUL, C � R, and SUS stand for
observed, context model, RULEX (rule-plus-exception model), combined
model, and SUSTAIN (supervised and unsupervised stratified adaptive
incremental network model), respectively.
a The predicted value falls outside of the confidence intervals.

Table 6
The Abstract Category Structure Used in Experiment 2

Learning item Dimension value Novel item Dimension value

3 A1 11111 N1 22222
A2 22221 N2 22211
A3 22212 N3 22112
A4 22122 N4 21122
A5 21222 N5 11222
A6 12222 N6 12221

Note. There is a family resemblance structure for the Category A (A)
items, which Item A1 violates (indicated by the arrow). N � novel item.
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Materials. The apparatus was the same as that used in Experiment 1.
The stimuli were drawn from the same set used in Experiment 1.

Design and overview. Subjects completed a learning phase in which
they rated the typicality (explained as goodness of example in the instruc-
tions) of the learning items shown in Table 6 followed by the same filler
phase used in Experiment 1. Finally, in the recognition phase, subjects
judged whether all of the stimuli shown in Table 6 appeared in the learning
phase (two blocks).

Prior to making typicality ratings in the learning phase, subjects were
familiarized with the six learning phase stimuli through their sequential
presentation (1 block) in a random order. Following this familiarization,
subjects completed 10 blocks of typicality ratings.

Unlike Experiment 1, all measures (i.e., typicality and recognition)
involved a 29-point rating scale (displayed horizontally on the monitor).
The advantage of rating scales lies in greater statistical power. To minimize
artifacts, the polarities of the scales were counterbalanced. For example, for
some subjects the right end of the scale indicated a typical stimulus,
whereas for others the left end did. Likewise, the right end of the recog-
nition scale indicated new for some subjects, whereas the left end did for
others. Thus, simply providing the same or opposite responses in the
learning and recognition phases would result in a null effect. For the
purposes of analyses, all ratings were mapped onto a 0 (atypical or new) to
1 (typical or old) scale with .5 as the midpoint.

Procedure. At the start the learning phase, there was a familiarization
block in which the subjects simply examined the members of Category A.
A stimulus was displayed for 5,002 ms. The text (“Members of Category
A”) above the stimulus notified subjects that all of the items belonged to
Category A. A blank screen was then displayed for 834 ms and the next
stimulus was presented.

After the familiarization block, subjects rated how typical of an example
each member of Category A was using the typicality rating scale described
earlier. The scale was displayed beneath the stimulus. Initially, there was
a red ball at the center of the scale. The ends of the scale were labeled Good
example and Bad example. Subjects used the less than and greater than
keys to move the ball toward the desired rating. Subjects pressed the Z key
when the ball was in the desired position. After pressing the Z key, a
high-pitch tone sounded and the text “Thank you” was presented below the
stimulus. The stimulus and the text were displayed for another 2,501 ms.
A blank screen was then displayed for 834 ms and the next trial began. In
the recognition phase of Experiment 2, subjects indicated their recognition
rating using the same procedure as was used to elicit typicality ratings, but
the ends of the scale were labeled Old and New.

Results

All subjects were included in the analyses. As predicted, sub-
jects rated structure-following Items A2–A6 as more typical than
the deviant Item A1 (.43 vs. .23) in the learning phase, t(51) �
6.53, p � .001.

The main prediction was that the deviant item would be recog-
nized best. The mean recognition ratings are shown in Figure 2. A
significant effect of item type was observed, F(2, 102) � 42.12,
MSE � 0.01, p � .001, with partial �2 � .45. Planned compari-
sons revealed that subjects rated the deviant item as older than the
structure-following items (see Table 7), t(51) � 4.41, p � .001.
The deviant and the structure-following items were both rated
older than the novel items, t(51) � 7.79, p � .001 and t(51) �
6.06, p � .001, respectively.

Although our main prediction was confirmed, it is not clear
whether the deviant item stood out from a schemalike or rulelike
structure. Previously, Medin and his colleagues (Ahn & Medin,
1992; Medin et al., 1987) found in free-sorting tasks that people’s
sorting behavior is often based on a single dimension. Attending to

a single dimension in Experiment 2 would lead to one of the
structure-following items violating the rule in addition to the
deviant item (see Table 6). Each subject’s recognition ratings for
the five structure-following items were sorted. If subjects formed
a single-dimension rule, the difference between the item rated
oldest and the item rated second oldest should be greater than the
difference between the second and third oldest. The results did not
support this prediction. On average, the change from the oldest to
the second oldest rated item (.05) was not statistically different
from the change from the second to the third oldest rated item (.06;
t � 1).

Model Analyses

The fits of the context model and SUSTAIN to the recognition
phase data are shown in Table 7. Although RULEX and the
combined model were not fit because RULEX is not readily
applied to an unsupervised learning situation, the preceding anal-
ysis inspired by RULEX conflicts with the notion that subjects
applied single-dimension rules. SUSTAIN (four parameters,
RMSD � 0.002) captured the pattern of data, whereas the context
model (one parameter, RMSD � 0.052) failed to predict the
recognition advantage of the deviant item over the other studied
items.

The context model’s one applicable parameter governs its sen-
sitivity to feature mismatches in calculating pairwise similarity.
The best fit of the context model displayed extreme sensitivity,
which leads to minimal stimulus generalization. Thus, all studied
items were recognized at the same rate. Decreasing sensitivity and
increasing stimulus generalization would result in the deviant item
being remembered worse than other items.

SUSTAIN’s modal solution was to create one cluster for the
schema-consistent Items A2–A6 and a separate cluster for the
deviant Item A1. This solution led to a large recognition advantage
for the deviant item. Another popular solution was to aggregate all
studied items into one cluster. This solution predicts a recognition
disadvantage for the deviant item. Individual differences in

Figure 2. Mean ratings in the recognition phase are shown along with
95% within-subject confidence intervals (Loftus & Masson, 1994). Error
bars represent standard errors of the mean. Dev � the deviant item; Str �
the structure-following items; Nov � the novel items.
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SUSTAIN simulations are in accord with our hypothesis that
differentiation of deviant items is necessary for a recognition
advantage to occur.

Discussion

The results from Experiment 2 support our basic hypothesis that
items are better remembered to the extent that they violate a salient
knowledge structure. In the case of Experiment 2, the salient
knowledge structure was acquired in the absence of supervision
and the violating item was not associated with errors.

Unlike the exception items from Experiment 1, the deviant item
did not violate a rule, but instead stood out against a pattern of
expectations that the other items largely satisfied. Rather than
being integrated with the other items, the deviant item was isolated
and better remembered. This interpretation is in accord with
SUSTAIN’s clustering account. SUSTAIN’s typical solution was
to devote one cluster to encoding the five items that were consis-
tent with the characteristic pattern (akin to a schema) and another
cluster to encoding the deviant item.

The context model posits no knowledge structures that can
confer an encoding advantage to deviant items. The context model
was unable to predict that the deviant item was remembered better
than the structure-following items because the deviant item dis-
played atypical values on all stimulus dimensions.

The results from Experiments 1 and 2 suggest that errors are not
necessary to obtain a recognition advantage for deviant items. In
Experiment 1, one exception was recognized better than the other
exception even though their error rates were statistically equiva-
lent. Similarly, the deviant item in Experiment 2 was recognized
best with no errors associated with any item. Although these
findings demonstrate that recognition can vary somewhat indepen-
dently of errors, error rate was not directly manipulated. In contrast
to Experiments 1 and 2’s focus on category structure, Experiment
3 investigates whether making an error by itself leads to improved
recognition.

Experiment 3

Experiment 3 explores the role of category learning errors on
subsequent recognition memory. Many learning models suggest
that errors play a central role in learning. For example, the Res-
corla and Wagner (1972) model predicts that associations are
strengthened to the extent that expectations do not match out-

comes. Subsequent error-minimization models follow a similar
logic (Gluck & Bower, 1988; Kruschke, 1992; Rumelhart, Hinton,
& Williams, 1986). These models are partially motivated by con-
ditioning phenomena, such as the blocking effect (Kamin, 1969),
which suggest that errors are necessary for changes in memory.
Somewhat related attentional models posit that errors mediate
memory storage by leading to greater focus on error-producing
items (Mackintosh, 1975; Pearce & Hall, 1980).

Findings from neuroscience are consistent with error-driven
models of learning. Norepinephrine neurons show transient activ-
ity whenever reinforcement contingencies change during acquisi-
tion (Sara & Segal, 1991). Similarly, cerebellar climbing fibers and
neurons in dorsolateral prefrontal cortex appear sensitive to an
error signal (Ito, 1989; Niki & Watanabe, 1979). On the reward
side of the equation, dopamine neurons in the substantia nigra are
highly activated in the presence of a surprising reward, but are not
active for anticipated rewards (see Schultz, 2000, for a review).
Work in event-related potentials provides further support for error-
driven learning models (Holroyd & Coles, 2002; Kopp & Wolff,
2000).

Despite all of this work, it is not clear whether errors per se drive
learning because errors typically occur when a stimulus runs
counter to an existing knowledge structure such as a rule. For
example, in Experiment 1 and in Palmeri and Nosofsky’s (1995)
experiments, exception items violated a salient rule and also re-
sulted in a large number of training errors. Furthermore, the results
from Experiment 2 demonstrated that errors are not necessary for
structure-violating items to display a recognition advantage.

Experiment 3 complements Experiment 2 by considering the
role of errors in recognition with irregular category structures that
lack natural clusters, imperfect rules, and so forth. Whereas Ex-
periments 1 and 2 manipulated the structural role of stimulus items
(e.g., schema consistent or schema inconsistent), Experiment 3
manipulates the error rate of stimulus items. Error rate was ma-
nipulated by creating a stimulus item that always resulted in a
learning error (i.e., when the subject responds “A” the feedback is
“B,” and vice versa). Another stimulus item always resulted in
correct feedback. The remaining items received regular feedback.
The category membership of the regular feedback items was not
contingent on the subject’s response. If errors lead to improved
recognition memory, the item that always results in an error should
be remembered best, followed by regular feedback items (which
on average will elicit a moderate number of errors), followed by
the item that always results in affirmative feedback.

RULEX and SUSTAIN make more subtle predictions about the
role of errors in memory. These models suggest that human learn-
ers will impose structure on learning problems even when the
category structures are highly irregular. Items that violate these
imposed structures will result in errors and will be better remem-
bered. Thus, these models hold that the effect of errors on recog-
nition is mediated through structure violation. SUSTAIN makes an
error when the current item runs counter to the dominant cluster,
whereas RULEX makes an error when the current item runs
counter to the applicable rule. According to SUSTAIN and
RULEX, errors cannot be completely dissociated from structural
considerations. The context model provides no role for errors and
predicts that the always-wrong item, regular feedback items, and
the always-right item will be remembered at the same rate.

Table 7
Recognition Ratings Observed in Experiment 2 (With 95%
Confidence Intervals) and Predicted by the Context Model and
SUSTAIN

Item Obs Con SUS

Dev .88 � .03 .84a .88
Str .78 � .03 .84a .78
Nov .67 � .03 .65 .67

Note. Item types included deviant item (Dev), structure-following items
(Str), and novel items (Nov). Obs, Con, and SUS stand for observed,
context model, and SUSTAIN (supervised and unsupervised stratified
adaptive incremental network model), respectively.
a The predicted value falls outside of the confidence intervals.
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Method

Subjects. Seventy-nine University of Texas undergraduates partici-
pated for course credit.

Materials. The apparatus was the same as that used in Experiment 1.
The stimuli were drawn from the same set used in Experiment 1. Four of
the five dimensions were randomly selected for each subject, with the
remaining dimension fixed to one of its two values (also randomly
determined).

Design and overview. Subjects completed a learning phase consisting
of classification learning trials involving the eight items under the heading
Learning item in Table 8. Subjects completed 20 blocks of learning trials
with corrective feedback. Following the learning phase, subjects completed
the same filler phase used in Experiment 1. Finally, subjects completed 2
recognition blocks of 2AFC trials. Each block was composed of eight pairs
of items. Each of the learning items was paired with a novel item under the
heading Novel item in Table 8. The paired items differed on the last
dimension value.

The variable of primary interest was the feedback type (regular, always
wrong, or always right) of learning phase items. Regular feedback items
(A1–A3 and B1–B3 in Table 8) generated feedback in accord with the
category assignment shown in Table 8. The always-wrong item always
generated negative feedback (i.e., when the subject responded “A” the
feedback was “B,” and vice versa). In contrast, the always-right item
always generated positive feedback (i.e., the feedback was always in
accord with the response).

Procedure. The procedure in Experiment 3 was identical to that in
Experiment 1 except for the following: (a) no hint was provided during the
learning phase and (b) there was no transfer phase.

Results

Seven subjects were excluded from further analysis. One subject
did not complete the experiment. The other 6 did not perform
above the chance level of 50% for regular feedback items in the
learning phase.

Learning phase. Unbeknownst to subjects, response time was
collected in the learning phase. The response time (collapsed
across accurate and inaccurate responses) was 1,858 ms for the
always-wrong item, 1,653 ms for the regular feedback items, and
1,472 ms for the always-right item, yielding a significant effect of
item type, F(2, 142) � 31.83, MSE � 2,683,346, p � .001, with
partial �2 � .31. In the learning phase, subjects devoted more time
to the always-wrong items than to the regular feedback items,
t(71) � 5.23, p � .001, and the always-right items, t(71) � 6.63,
p � .001. Subjects responded more slowly to the regular feedback
item than to the always-right item, t(71) � 3.95, p � .001.

Recognition phase. The mean recognition accuracies are
shown in Figure 3. A significant effect of feedback type was
observed, F(2, 142) � 6.09, MSE � 0.64, p � .01, with partial
�2 � .08. Planned comparisons revealed that subjects demon-
strated significantly higher recognition accuracy for the always-
wrong item than for the regular feedback item (see Table 9),
t(71) � 3.85, p � .001, and the always-right items, t(71) � 2.39,
p � .05. There was no significant recognition difference between
the always-right and regular feedback items (t � 1).

The poor recognition performance for items other than the
always-wrong item is partially attributable to similarity of targets
and foils, which only differed on one dimension. Another possible
factor is subjects’ imposition of structure on Categories A and B,
which we consider next.

Imposing structure on learning and recognition. SUSTAIN
and RULEX predict that subjects will impose structure on rela-
tively unstructured learning problems and that the effect of errors
on recognition memory will be mediated through these imposed
structures. In this light, the always-wrong item should be remem-
bered best because it violates any imposed structure. Analyses
reported here for the regular feedback items further support the
view that subjects are imposing structure on Categories A and B.

Imposing structure in terms of rules or tuned clusters results in
a bimodal distribution of errors, with consistent items leading to
few errors and inconsistent items leading to many errors. In con-
trast, the null hypothesis holds that items are encoded indepen-
dently of one another at the same rate and that responses are
distributed accordingly. The last two blocks of the learning phase
were analyzed to test whether the pattern of responding for the
regular feedback items followed the predictions of the structure
imposition view. As predicted by this view, the distribution of item
responses for the last two blocks (298 consecutive corrects vs.
277.12 expected, 96 one correct/one error vs. 137.76 expected, and
38 consecutive errors vs. 17.12 expected) was more skewed to-
ward all correct or incorrect responses than would be expected by
the binomial distribution, �2(2, N � 432) � 39.70, p � .001.

According to the structure imposition account, this pattern of
responding should also hold in the two recognition blocks. As
predicted, the distribution of item responses for the two recogni-
tion blocks (135 consecutive corrects vs. 105.51 expected, 157 one
correct/one error vs. 215.97 expected, and 140 consecutive errors
vs. 110.51 expected) was more skewed toward all correct or
incorrect responses than would be expected by the binomial dis-
tribution, �2(2, N � 432) � 32.21, p � .001.

SUSTAIN and RULEX also predict which regular feedback
items will most likely be characterized as consistent or inconsis-
tent. Although there is little structure to characterize Categories A
and B, Items A1 and B1 in Table 8 serve as the prototypes of their
categories. RULEX predicts these items are more likely to follow
a constructed rule. Likewise, SUSTAIN predicts that these items
are more likely to cluster with other items from the same category.
Therefore, both models predict fewer learning errors for these
items. As predicted, prototype items resulted in significantly
higher classification accuracy (.74 vs. .64) than the other regular
feedback items, t(71) � 4.91, p � .001. The models also predict
poorer recognition for the prototype items than for the other
regular feedback items. Though the effect (.45 vs. .51) did not
reach significance, t(71) � 1.38, p � .17, it was in the predicted
direction.

Table 8
The Abstract Category Structures Used in Experiment 3

Learning item Dimension value Novel item Dimension value

A1 1111 N1 1112
A2 2121 N2 2122
A3 1212 N3 1211
B1 2222 N4 2221
B2 1221 N5 1222
B3 2112 N6 2111

3 W 1122 N7 1121
R 2211 N8 2212

Note. Item W always resulted in negative feedback (indicated by the
arrow). A � Category A; B � Category B; W � wrong; R � right.
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Model Analyses

The model fits for the recognition data are shown in Table 9.
SUSTAIN (three parameters, RMSD � 0.011) correctly predicts
the basic results, and its estimates fall within the confidence
intervals shown in Figure 3. RULEX (five parameters, RMSD �
0.076) correctly predicts the recognition advantage of the always-
wrong item, but underpredicts recognition for the always-right
item. The context model (parameter invariant, RMSD � 0.095)
incorrectly predicts uniform performance across item types, lead-
ing to underpredicting recognition for the always-wrong item. The
context model’s predictions are parameter invariant because all
items bear the same similarity relations to one another. Because
RULEX and the context model have difficulty with different
aspects of the data, the combined model (six parameters, RMSD �
0.049) fairs better than its constituent models.

Discussion

Whereas Experiments 1 and 2 focused on the role of knowledge
structures in directing encoding and recognition, Experiment 3
adopted irregular category structures and instead manipulated the
error rate of items during learning. The main finding from Exper-
iment 3 was that the always-wrong item, which always resulted in
an error during the learning phase, was better remembered than
other items that resulted in fewer errors. However, further analysis
of the data revealed that the effect of errors on recognition was
likely mediated by structural and attentional mechanisms.

For instance, response time increased as error rate increased in
the learning phase. One reasonable interpretation is that subjects
allocated more resources to encoding items that were difficult to
classify (cf., Stern et al., 1984). Perhaps more interesting are
analyses that support predictions made by SUSTAIN and RULEX
concerning subjects’ imposition of structure on Experiment 3’s
irregular category structures. These analyses suggest that subjects
treated stimulus items as being consistent or inconsistent with an
imposed abstraction (e.g., rule, cluster, or schema). Consistent

items result in fewer errors during learning and worse recognition
than with inconsistent items. These models and analyses suggest
that the role of errors in determining recognition memory is
mediated through imposed knowledge structures. One possible
conclusion is that the drive to extract meaning or abstractions from
examples renders it impossible to study the effect of errors on
recognition memory independent of structural considerations.

These effects of knowledge structures are somewhat surprising,
given how few exemplars were used and how poorly structured the
categories were. Others have found that exemplar strategies dom-
inate with such situations (Minda & Smith, 2001; J. D. Smith &
Minda, 1998). Indeed, the effects of imposed structure were subtler
than in previous experiments. Still, the results from Experiment 3
were best accounted for by SUSTAIN, which posits schemalike
structures to represent knowledge. In contrast, the context model
was unable to account for the results.

General Discussion

Experiments 1–3 demonstrate that work from the memory lit-
eratures is relevant to understanding category learning. These
literatures, along with our results, suggest that items are better
remembered to the extent that they are differentiated from a salient
knowledge structure. The results from Experiments 1–3 are prob-
lematic for current models of category learning and recognition.
The findings suggest new directions for categorization, schema,
stereotype, and memory research. Following a brief review of our
results, we discuss possible points of integration among these
literatures.

Overview of Empirical Results

Experiment 1 manipulated the salience of knowledge structures
to test the prediction that items differentiated from a more salient
knowledge structure are remembered better (cf. Rojahn & Petti-
grew, 1992). Knowledge structures took the form of imperfect
rules, and saliency was manipulated by the number of items
satisfying the rule (cf. Koffka, 1935). The results supported our
predictions and followed from work in the memory literatures,
suggesting that mental representations of regularities are more
schemalike than rulelike.

To dissociate violation of structure from making errors, Exper-
iment 2 extended our analysis to the domain of unsupervised

Figure 3. Mean accuracies in the recognition phase are shown along with
95% within-subject confidence intervals (Loftus & Masson, 1994). Error
bars represent standard errors of the mean. Wro � the always-wrong item;
Reg � the regular feedback items; Rig � the always-right item; 2AFC �
two-alternative forced choice.

Table 9
Two-Alternative, Forced-Choice Recognition Performances
Observed in Experiment 3 (With 95% Confidence Intervals) and
Predicted by the Models

Item Obs Con RUL C � R SUS

Wro .67 � .08 .56a .62 .65 .67
Reg .49 � .08 .56 .50 .55 .49
Rig .51 � .08 .56 .42a .48 .50

Note. Item types included always-wrong item (Wro), regular-feedback
items (Reg), and always-right item (Rig). Obs, Con, RUL, C � R, and SUS
stand for observed data, context model, RULEX (rule-plus-exception
model), combined model, and SUSTAIN (supervised and unsupervised
stratified adaptive incremental network model), respectively.
a The predicted value falls outside of the confidence intervals.
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learning with a category structure akin to that of natural categories
(Rosch & Mervis, 1975). Outside of the laboratory, unsupervised
learning is probably more prevalent than classification learning
(Love, 2003b). In contrast to Experiment 1, the category structure
was not defined by experimenter-supplied feedback but was spec-
ified by dimension-value frequency and correlations among stim-
ulus dimensions. The learning phase was reminiscent of the ob-
servational procedures used in schema, stereotype, and other
memory research. The results from Experiment 2 suggested that
subjects formed a schemalike knowledge structure to encode the
items that conformed to a common statistical pattern and encoded
the deviant item that violated the pattern against this backdrop.
Mirroring the results in supervised learning, the deviant item was
remembered better than the schema-consistent items.

Work in the schema and stereotype literatures has focused on
how knowledge structures guide encoding and retrieval. Typically,
errors accompany the violation of a salient knowledge structure
during learning. Instead of focusing on category structure, Exper-
iment 3 manipulated the error rate to examine whether errors per
se could lead to improved recognition. The results indicated that
errors are a correlate, but not a cause of enhanced recognition.
Subjects imposed structure on the relatively unstructured catego-
ries of Experiment 3. Items that violated these imposed structures
were better remembered. The results also suggested that errors
may correlate with enhanced recognition because of the extra
study time devoted to error-prone items (cf. Metcalfe, 2002;
Thiede & Dunlosky, 1999).

Taken together, the results from Experiments 1–3 argue that the
drive to discover structure is pervasive. Once a structure is dis-
covered or imposed, it guides the encoding of subsequent experi-
ences. Items are better remembered to the extent that they violate
a salient knowledge structure. The more entrenched the knowledge
structure, the better memory is for items differentiated from it.
Other explanations, although perhaps accounting for aspects of the
data, do not fare as well. Errors did not differentiate between the
two types of deviant items in Experiment 1, played no role in
Experiment 2, and appeared to be mediated through knowledge
structures and study time allocation in Experiment 3. Explanations
based on study time also failed to explain the entire pattern of
results.

Overview of Simulations

The context model, RULEX, their combination (i.e., the com-
bined model), and SUSTAIN were fit to the recognition data.
Overall, SUSTAIN fit the data the best, capturing the quantitative
and qualitative patterns of results for all studies. The other models
had trouble accounting for aspects of the data from each of our
three experiments.

Out of all the models, SUSTAIN’s operation is most consistent
with the memory literatures. SUSTAIN’s cluster representations
are somewhat analogous to schemas or stereotypes. Additional
clusters are recruited in response to surprising events, which al-
lows SUSTAIN to differentiate inconsistent items. This differen-
tiation allows SUSTAIN to predict a recognition advantage for
inconsistent information.

RULEX, a hypothesis-testing model that stores exceptions to
rules, can also predict a recognition advantage for inconsistent
information in a number of circumstances. Both RULEX and

SUSTAIN predict that subjects impose structure on learning prob-
lems and that the effect of errors on recognition is mediated
through these imposed structures. However, RULEX’s rule-based
representations of knowledge are insensitive to structure saliency
(e.g., frequency), are too abstract (e.g., studied rule-following
items and novel items are treated similarly), and are not readily
applied to unsupervised learning. While capturing aspects of the
results, these departures from schema-inspired category represen-
tations prevented RULEX from completely accounting for the
results of any study.

The context model diverged the farthest from the schema-
inspired representations and also faired the worst in terms of fitting
the data. The context model is an exemplar model and stores every
training item, leaving no role for knowledge structures to guide
encoding. The context model could not predict that items that
deviate from a regularity are better remembered. The combined
model, which generates recognition judgments by pooling
RULEX’s and the context model’s outputs, addressed some of
RULEX’s shortcomings in regard to having overly abstract repre-
sentations. The exemplar representations of the context model
allowed the combined model to differentiate between rule-
following and novel items. However, the combined model, despite
its numerous parameters, did not account for all aspects of the data.

Further Synergies and Future Research

Inference learning. Whereas the classification learning tasks
considered in Experiments 1 and 3 stress information that discrim-
inates between categories, other induction tasks, such as inference
learning, stress the internal structure of the individual categories
(Chin-Parker & Ross, 2002; Yamauchi, Love, & Markman, 2002;
Yamauchi & Markman, 1998). In inference learning, the learner is
provided with the category label and predicts the value of an
unknown perceptual dimension. For example, the learner might
predict the color of a stimulus given the other perceptual dimen-
sions and the category membership of the item. On the next trial,
he or she might predict the size of the stimulus. Inference and
classification learning are informationally equivalent because after
receiving feedback, complete stimulus information is available in
both induction tasks. Despite this equivalence, dramatically differ-
ent patterns of learning and transfer are observed (see Markman &
Ross, 2003, for a review).

Given that SUSTAIN has successfully accounted for inference
and classification learning data (Love, Markman, & Yamauchi,
2000; Love et al., 2004), one natural question is how differences in
these induction tasks will affect recognition. SUSTAIN makes
some interesting predictions. For example, SUSTAIN (along with
our differentiation account of recognition) predicts that acquiring
the categories in Experiment 1 through inference learning on the
rule dimension will reverse the pattern of observed findings. Under
inference learning, the exception in the large category should be
remembered better than the exception in the small category. In the
case of inference, the mapping is from category membership to
rule dimension rather than from rule dimension to category mem-
bership as in classification learning. Thus, in inference learning,
the exception in the larger category violates the more salient
regularity, and the predicted pattern of results for inference learn-
ing is the opposite of classification learning.
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Cognitive neuroscience. Models of category learning have
helped provide a theoretical understanding of category learning
and recognition data from neuropsychological studies. For exam-
ple, amnesic patients’ ability to acquire simple categories while
showing impaired recognition has been used to argue for the
presence of multiple memory systems (Knowlton & Squire, 1993),
but this interpretation of the data has been challenged by simula-
tions that demonstrate that this dissociation can be modeled within
a single exemplar system (Nosofsky & Zaki, 1998). SUSTAIN
successfully accounted for our results by utilizing the same mech-
anisms for categorization and recognition. SUSTAIN’s success,
coupled with Occam’s razor, disfavors accounts that posit distinct
systems for categorization and recognition.

Although category learning models have been useful in provid-
ing a theoretical understanding of cognitive neuroscience findings,
these findings can also provide helpful constraints on the devel-
opment of category learning models. Recent work has attempted to
relate the operation and parts of SUSTAIN to structures in the
brain through simulation of data from infant, amnesic, normal, and
aging populations (Gureckis & Love, 2004; Love, 2003a). Initial
results suggest that the hippocampus is necessary for cluster re-
cruitment, clusters initially reside in the medial temporal lobe, and
SUSTAIN’s attentional mechanism is instantiated by frontal loops.

Alignable and nonalignable differences. The findings from
Experiments 1–3 may relate to literatures that appear quite distant
on the surface. Work in analogy suggests that alignable differences
are more effective retrieval cues and play a more important role in
preference formation than nonalignable differences (Markman &
Gentner, 1997; Zhang & Markman, 1998). Alignable differences
arise from somewhat salient common dimensions. For example, an
alignable difference of a car and a motorcycle is the number of
wheels. In this case, the common dimension is having wheels.
Nonalignable differences arise when one object has a dimension
that the other object lacks. For example, a seat belt is a nonalign-
able dimension for a motorcycle and a car because motorcycles do
not have the dimension of restraining device.

In relation to our work, the common dimensions that give rise to
alignable differences can be viewed as common structures or
schemas. Collections of these common dimensions may define a
superordinate category that includes both object categories (cf.
Markman & Wisniewski, 1997). In effect, these common dimen-
sions define knowledge structures (akin to the rule-relevant dimen-
sion in Experiment 1) that highlight mismatches across object
categories. In keeping with our results, deviance from these knowl-
edge structures is highlighted.

Final Note

One exciting aspect of this line of research is that it affects work
within category learning (as evidenced by the challenges it poses
to current models of category learning and subsequent recognition)
and exposes connections to work outside of category learning.
Although the discussion here has largely focused on the benefits of
importing ideas from work in schemas and stereotypes to the
category learning literature, the potential benefit to these areas is at
least as great. Work in category learning typically offers a great
deal of experimental control that is not afforded to research that
relies on tapping preestablished knowledge structures. Further-
more, it is often impossible to monitor the development of schemas

and stereotypes, let alone direct it. These methodological benefits,
paired with computational models that make precise predictions,
may prove to be valuable tools for research in schemas and
stereotypes. The work presented here is an initial step in exploring
the conceptual interconnections between a number of areas that
appear concerned with similar issues. Still, across methods and
subfields, the basic conclusions from work in category learning,
analogy, schemas, and stereotypes appear in concert.
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Appendix

Modeling Details

In this appendix, we first describe the procedures for the model fits. We then
describe the context model, RULEX, the combined model, and SUSTAIN.

Model Fit Procedures

All of the models were simulated in a manner as consistent as possible
with the procedures used in the original human experiments. For example,
only the model runs that reached the criterion applied to humans (e.g.,
above chance performance in the learning phase) were included in the
model analyses. Only the results from the recognition phase were fit
because our main interest was in examining recognition memory, and all
the models gave reasonable accounts of the learning and transfer phase
data.

Fit was measured by root mean squared deviations (RMSD). The best
fitting parameters were found by searching the parameter space using the
PGAPack genetic algorithm (Levine, 1996). The genetic algorithm
searched the parameter space to find the parameter set that minimized
RMSD.

Models generated recognition ratings during simulations of Experiment
2 and Palmeri and Nosofsky’s (1995) Experiment 3. The models’ recog-
nition ratings were based on the familiarity, F, as given for the context
model in Equation 4, for RULEX in Equation 5, for the combined model
in Equation 8, and for SUSTAIN in Equation 11. In fitting recognition
ratings, a linear relationship was assumed between F and the human
ratings. The best fitting parameters (slope and intercept) for the models for
these simulations are shown in Table A1.

Models made two-alternative forced-choice judgments between a stud-
ied and a novel stimulus in simulations of Experiments 1 and 3. The
probability of choosing the studied item was determined by the exponential
decision function,

P�old� �
er�Fold

er�Fold � er�Fnew
, (A1)

where Fold is the model’s familiarity for the studied stimulus, Fnew is the
model’s familiarity for the novel stimulus, and r is the recognition decision
parameter. The best fitting values for r are shown in Table A2. Like the
linear response function parameters of slope and intercept, the r recognition
decision parameter affects the quantitative but not qualitative predictions of
the models.

Context Model

The context model fully stores each training example. The probability
that a given stimulus Si is classified into Category A is determined by
summing the similarity of Si to all members of Category A and dividing by
the summed similarity of Si to members of both Categories A and B,

P�A|Si� �

�
j�A

sij

�
j�A

sij � �
j�B

sij

, (A2)

where sij is the similarity between Si and Sj determined by the multiplica-
tive rule,

sij � �
m�1

M

sm
�m �i,j� , (A3)

where sm is a parameter indicating the similarity of mismatches along
dimension m, and �m (i, j) is an indicator function equal to 0 if stimulus Si

and Sj match along dimension m and set equal to 1 if they mismatch along
dimension m. The similarity parameter, sm, represents a combination of
dimension salience and selective attention.

Recognition decisions in the context model are based on the absolute
summed similarity of a stimulus item to the stored exemplars of both
categories. The familiarity, Fi, of a stimulus item, Si, is

Fi � �
j�A

sij � �
j�B

sij. (A4)

In Experiment 3 and in Palmeri and Nosofsky’s (1995) Experiment 3, the
summed similarity of a stimulus item to the stored exemplars was the same
for all items. Thus, varying sm had no effect on the context model’s
predictions. In Experiment 1, subjects were instructed to attend to the rule
dimension. One parameter (srule set to .025) was used for the rule dimen-
sion, and another parameter (snonrule set to .757) was used for the other
dimensions. In Experiment 2, only one parameter (sx set to .011) was
needed because all dimensions are structurally equivalent.

RULEX

In the RULEX model, classification learning is based on the acquisition
of rules. Rules can be supplemented by the partial storage of exceptions.
First, RULEX searches for a perfect single-dimension rule. A dimension is
sampled according to Wi (each dimension’s intrinsic salience parameter)
and a single-dimension rule is formed. When physical dimensions are

Table A1
The Slope and Intercept Used in the Linear Transform of F
(Generated by the Models) Into Recognition Ratings for
Experiment 2 (Exp. 2) and Palmeri and Nosofsky’s (1995)
Experiment 3 (PN 3)

Model

PN 3 Exp. 2

Slope Intercept Slope Intercept

Context 183.342 	1,418.536 0.189 0.648
RULEX 1.643 5.459 —
Combined 2.317 5.159 —
SUSTAIN 18.137 	7.535 4.645 	1.649

Note. The dashes indicate that RULEX (rule-plus-exception model) and
the combined model were not fit to Experiment 2. SUSTAIN � supervised
and unsupervised stratified adaptive incremental network model.

Table A2
The Best Fitting Values of the Recognition Decision
Parameter r

Model Exp. 1 Exp. 3

Context 3.329 2.431
RULEX 39.907 2.855
Combined 2.620 49.567
SUSTAIN 44.445 5.322

Note. The r parameter transforms the F values generated by models into
forced-choice probabilities in Experiment 1 and Experiment 3 simulations.
Exp. � experiment. RULEX � rule-plus-exception model; SUSTAIN �
supervised and unsupervised stratified adaptive incremental network
model.
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randomly assigned to abstract dimensions, RULEX assumes equal dimen-
sion saliences. When a rule fails, it is discarded and a new dimension is
sampled.

If all dimensions fail to provide a perfect single-dimension rule, RULEX
searches for an imperfect single-dimension rule through the same process
used to search for a perfect single-dimension rule. An imperfect rule is
retained for a minimum number of trials set equal to the number of training
items by default. When the minimum number of trials is reached, the
imperfect rule is retained only if performance exceeds lax (the lax criterion
parameter). The imperfect rule is evaluated after a given number of trials
is set equal to twice the number of training items. At this point, if
performance exceeds scrit (the strict criterion parameter), the imperfect
rule is permanently stored. Otherwise, it is discarded and another dimen-
sion is selected. If all dimensions have been sampled, RULEX searches for
a conjunctive rule by using a similar process.

Following the permanent storage of a single-dimension or a conjunctive
rule, RULEX attempts to store exception items that contradict the stored
rule. The dimensions of the exception that contradict the stored rule are
sampled with probability one. Other dimensions are probabilistically sam-
pled with probability pstor (the probability storage parameter). If a dimen-
sion is not sampled, it is stored as a “wildcard” that can match any value.
The probability that an exception will be stored in memory is equal to
pstorN, where N is the number of dimensions that were sampled in the
previous step.

When making a classification decision, RULEX first searches for all
stored exceptions that match a given stimulus item. When an item matches
a stored exception, the classification response is based on the matched
exception. If an item matches multiple exceptions, the response depends on
how many of the matched exceptions signal Category A or Category B. An
exception that results in a classification error is removed from memory.
RULEX applies the rule if no exceptions match the item.

The familiarity of a stimulus, Si, is determined by its summed similarity
to each of the exceptions, Xj, and is given by

Fi � �
j�Exc

sij, (A5)

where sij is

sij � �
m�1

M


m�i,j�, (A6)

where


m�i,j� � � sw if Xj contains a wildcard on dimension m
ss if Si mismatches Xj on dimension m
1 if Si matches Xj on dimension m

� , (A7)

where sw and ss are the wildcard and mismatch similarity parameters. The
best fitting parameter values for RULEX are shown in Table A3.

Combined Model

Classification decisions in the combined model are based on RULEX,
but recognition decisions are based on a combination of RULEX’s re-
sponse (discussed previously) and residual exemplar memory (imple-
mented using the context model). The familiarity of a stimulus, Si, is
defined by

Fi � �Fi
X � �1 � ��Fi

R, (A7)

where Fi
X is the summed similarity of Si to the exceptions (familiarity as

defined in Equation 5 for RULEX), Fi
R is the residual summed similarity

of Si to all exemplars (familiarity as defined in Equation 4 for the context
model), and the parameter � weights the contributions of these two sources
of familiarity. Setting � equal to 0 results in a version of the context model
(with equal dimension similarity, s, for all dimensions), whereas setting �
equal to 1 is equivalent to using RULEX alone. The best fitting parameter
values for the combined model are shown in Table A4.

SUSTAIN

At the start of training, SUSTAIN creates a single cluster centered on the
first training item. SUSTAIN assigns subsequent training items to the most
similar cluster. Cluster recruitment is triggered by a surprising event. In
supervised learning, a surprising event is a prediction error. In unsuper-
vised learning, a surprising event is encountering a sufficiently novel
stimulus. When items are successfully assigned to a cluster, the winning
cluster adjusts its position to move toward its newest member, strengthens
its association weights, and adjusts attention to favor predictive dimen-
sions. Items are classified based on cluster assignment. Recognition
strength is determined by summing the output of all clusters.

A nominal stimulus dimension containing k distinct values is represented
by k input units. The unit that denotes the value of the dimension is set to
one, and all of the other units forming the dimension are set to 0. A
complete stimulus is represented by I posik, where i indexes the stimulus
dimension, and k indexes the nominal values for dimension i. The pos in
I pos denotes that the current stimulus occupies a particular position in a
multidimensional representational space.

The distance �ij between the ith stimulus dimension and cluster j’s
position along the ith dimension is

� ij �
1

2�
k�1

vi

|I posik � Hj
posik|, (A9)

where vi is the number of different nominal values on the ith dimension,
I posik is the position of the input stimulus on the ith dimension for value k,
and H posik is cluster j’s position on the ith dimension for value k. The
distance �ij is always between 0 and 1 inclusive.

The activation of a cluster is given by

H j
act �

�
i�1

m

�	i�

e		i�ij

�
i�1

m

�	i�



, (A10)

where H j
act is the activation of the jth cluster, m is the number of stimulus

dimensions, 	i is the tuning of the receptive field (which implements
attention in SUSTAIN) for the ith input dimension, and 
 is the attentional
parameter (always nonnegative).

Clusters compete to respond to input patterns and in turn inhibit one
another,

H j
out �

�H j
act��

�
i�1

n

�H i
act��

H j
act, (A11)

Table A3
The Best Fitting Parameters for RULEX

Parameter PN 3 Exp. 1 Exp. 3

Rule dimension weight (Wrule) 1.000
Lax criterion (lax) 0.602 0.624 0.300
Strict criterion (scrit) 0.750 0.413 0.112
Probability storage ( pstor) 1.000 0.911 1.000
Wildcard similarity (sw) 0.004 0.199 0.153
Mismatch similarity (ss) 0.130 0.975 0.708

Note. PN 3 � Palmeri and Nosofsky’s (1995) Experiment 3; Exp. �
experiment; RULEX � rule-plus-exception model.
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where n is the number of the clusters, and � is the lateral inhibition
parameter (always nonnegative) that regulates cluster competition.
SUSTAIN’s recognition responses are determined by summing H j

out for all
clusters. When classifying an item, SUSTAIN selects the winning cluster
by setting H j

out for all nonwinning Hj 0.
Activation is spread from the clusters to the output units of the unknown

(queried) dimension z by

C zk
out � �

j�1

n

wj,zk H j
out, (A12)

where C zk
out is the output of the output unit representing the k th nominal

value of the unknown zth dimension, n is the number of clusters, and wj,zk

is the weight from cluster j to output unit Czk. In classification learning, z
is the category label.

The probability of making a response k (the kth nominal value) for the
queried dimension z is

P�k� �
e�d�C zk

out�

�
j�1

vz

e�d�C zk
out�

, (A13)

where d is the response parameter (always nonnegative), and vz is the
number of nominal units (and hence output units) forming the queried
dimension z.

After responding, feedback is provided to SUSTAIN. In classification
learning, a new cluster is recruited when the winning cluster predicts the
incorrect category label. In unsupervised learning, a new cluster is re-
cruited when the activation of the most activated cluster is below the

parameter �. Recruited clusters are centered on the misclassified example
(i.e., all �ij will be 0 for the new cluster and the current stimulus).

For the winning cluster Hj, the position of the cluster is adjusted by

�H j
posik � ��I posik � H j

posik�, (A14)

where � is the learning rate parameter. The winning cluster moves toward
the current stimulus. This learning rule centers the cluster amid its
members.

Receptive field tunings (which implement dimensional attention) are
updated according to

�	 i � �e		i�ij�1 � 	i�ij�, (A15)

where j is the index of the winning cluster. Only the winning cluster
updates the value of 	i.

The one layer delta learning rule (Rumelhart et al., 1986) is used to
adjust weights from clusters to output units and is given by

�wj,zk � ��tzk � C zk
out�H j

out, (A16)

where z is the queried dimension. Note that only the winning cluster will
have its weights adjusted because it is the only cluster with a nonzero
output.

In Experiment 1, subjects were alerted to the rule dimension. The 	distinct

parameter was used to allow SUSTAIN to initially weight the rule dimen-
sion more than the nonrule dimensions (	 is normally set to 1). The best
fitting parameter values for SUSTAIN are shown in Table A5.
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Table A4
The Best Fitting Parameters for the Combined Model

Parameter PN 3 Exp. 1 Exp. 3

Rule dimension weight (Wrule) 0.917
Lax criterion (lax) 0.631 0.592 0.602
Strict criterion (scrit) 0.628 0.444 0.166
Probability storage ( pstor) 0.892 0.987 0.957
Wildcard similarity (sw) 0.020 0.433 0.551
Mismatch similarity (ss) 0.181 0.756 0.425
Exemplar similarity (s) — 0.235 —
Exception weight (�) 0.707 0.799 0.822

Note. A dash indicates that all values yield the same fit. PN 3 � Palmeri
and Nosofsky’s (1995) Experiment 3; Exp. � experiment.

Table A5
The Best Fitting Parameters for SUSTAIN

Parameter PN 3 Exp. 1 Exp. 2 Exp. 3

Attentional focus (
) 0.614 2.799 4.159 1.798
Cluster competition (�) 10.144 0.510 9.930 9.044
Decision consistency (d) 33.616
Learning rate (�) 0.063 0.076 0.044 0.070
Distinct focus (	distinct) 5.346
Recruitment threshold (�) 0.291

Note. The parameter d for Experiment 1 and Experiment 3 was yoked to
the recognition decision parameter r. PN 3 � Palmeri and Nosofsky’s
(1995) Experiment 3; Exp. � experiment; SUSTAIN � supervised and
unsupervised stratified adaptive incremental network model.
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