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Learning Nonlinearly Separable Categories by Inference and Classification
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Previous research suggests that learning categories by classifying new instances highlights information
that is useful for discriminating between categories. In contrast, learning categories by making predictive
inferences focuses learners on an abstract summary of each category (e.g., the prototype). To test this
characterization of classification and inference learning further, the authors evaluated the two learning
procedures with nonlinearly separable categories. In contrast to previous research involving cohesive,
linearly separable categories, the authors found that it is more difficult to learn nonlinearly separable
categories by making inferences about features than it is to learn them by classifying instances. This
finding reflects that the prototype of a nonlinearly separable category does not provide a good summary
of the category members. The results from this study suggest that having a cohesive category structure
is more important for inference than it is for classification.

Categories are crucial for a variety of cognitive processes,
including analogy, causal reasoning, memory, imagination, cre-
ativity, generalization, and prediction. Most research on category
acquisition has focused on how category representations are
formed, often using a variant of an inductive classification task. A
typical assumption in this research is that the category represen-
tations acquired through classification learning support the many
uses of categories. There has been a growing movement, however,
to examine how the variety of category uses influence what is
learned (Brooks, 1978; A. B. Markman & Makin, 1998; A. B.
Markman, Yamauchi, & Makin, 1997; Ross, 1996, 1997, 1999;
Yamauchi & Markman, 1995, 1998, 2000a, 2000b, 2000c). This
work suggests that the representations formed during learning
depend in important ways on the task carried out during learning.

Two central uses of categories that have been explored in
previous research are classification and predictive inference. Clas-
sification is clearly an important function of categories. An item
must be classified before category knowledge can be applied.
Accordingly, human classification performance has been studied
extensively (e.g., Medin & Schaffer, 1978; Nosofsky, 1986; Shep-
ard, Hovland, & Jenkins, 1961). Inferenceisalso acritical function
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of categories. One reason we have categories is to support predic-
tions. For example, once we know a politician’s party affiliation
we can infer his or her view on a number of issues. Inferenceis so
central to categorization that Anderson (1991) based his rational
model of category learning on the assumption that categories are
formed to maximize people's ability to make accurate predictive
inferences. Consistent with the importance of inference, a number
of studies have been directed at the way categories are used to
make predictions (e.g., Heit & Rubinstein, 1994; Lassaline, 1996;
Malt, Ross, & Murphy, 1995; Murphy & Ross, 1994; Osherson,
Smith, Wilkie, Lopez, & Shafir, 1990; Rips, 1975; Ross & Mur-
phy, 1996; Yamauchi & Markman, 2000a).

In this article, we explore differences between categories
learned by classification and categories learned by making predic-
tiveinferences (see Y amauchi & Markman, 1995, 1998, 2000b). In
the next section, we describe previous research on this topic, and
isolate a prediction that has not yet been tested. In brief, the results
of previous research with cohesive, linearly separable category
structures are consistent with the hypothesis that inference focuses
participants on summary information (such as prototypes),
whereas classification learning focuses participants on information
that discriminates between the categories (Y amauchi & Markman,
1998). Experiments 1 and 2 provide further support for this hy-
pothesis using nonlinear category structures. Whereas previous
research with linear categories demonstrated advantages for infer-
ence learning (further discussed below), the nonlinear category
structures explored here should (and do) display advantages for
classification learning.

Inference, Classification, and Category Labels

Categories are formed in the process of interacting with cate-
gory instances. The information that is salient for carrying out a
particular task may influence what is learned about a category.
Nevertheless, it may seem surprising that inference and classifi-
cation differ in the category representation that they generate,
because these two tasks are very similar.
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In the classification task typicaly used in studies of category
acquisition, the participant is shown an exemplar consisting of
values along a set of feature dimensions. For example, each
exemplar might have four dimensions, and the value along each
binary dimension might be denoted asa 1 or a0 (e.g., a 1 could
denote a triangle, whereas a 0 could denote a circle). Thus, the
configuration 1 0 0 O might describe a particular exemplar with
four feature dimensions (e.g., form, size, color, position). The
participant’s task is to predict the category label of this stimulus.
If there are two possible [abels, then these may also be denoted as
1 or 0. Thus, the sample exemplar discussed here could be sche-
matized as a five-dimensional stimulus with the values1 000 ?
(e.g., form, size, color, position, category label), where the ques-
tion mark signals an unknown value. On al trialsin a classification
task, the category-label dimension is unknown and must be pre-
dicted. After category membership is predicted, feedback that
displays all stimulus features (e.g., 1 0 0 0 0) is provided.

The predictive inference task used in previous research has a
similar structure (Yamauchi & Markman, 1995, 1998, 2000b).
Participants are told the category label and the values of al feature
dimensions but one, and are asked to predict the value of the
missing dimension. For example, on onetrial, the participant might
see a stimulus with the abstract structure 1 ? 0 0 0 and predict the
value of the missing feature (in this case, the category label is the
fifth dimension and the second dimension is being predicted).
After predicting the unknown feature value, feedback is provided
with al stimulus features (eg., 1 0 0 0 0). Across trias, the
unknown stimulus dimension that must be predicted varies, though
the category label is always known. One should notice that clas-
sification and inference learning present the same stimulus infor-
mation to the learner (i.e., the complete stimulus description is
shown after feedback).

Assuming the category label is just another feature dimension,
each trial of the inference task is equivalent to the classification
task. On this view, the primary difference between these tasks is
that classification requires a prediction of the category label on
each trial, whereas inference requires a prediction of avalue for a
different feature dimension on each trial. In both cases, the feed-
back at the end of each trial presents a complete stimulus with the
category label.

Despite this similarity in task structure, there is some reason to
expect that the two tasks will differ. In particular, category labels
may play a larger role in organizing conceptual information than
other features (Yamauchi & Markman, 2000a). For example,
Gelman and Markman (1986) found that four-year-old children are
capable of using category labels for induction even when two
items that bear the same label appear very different. E. M. Mark-
man and Hutchinson (1984) also found that two- to three-year-old
children are able to grasp categorical implications associated with
a count noun. When an object is referred to with an arbitrary noun
(e.g., “Thisis a dax. Find another dax.”), children tend to group
objects from the same category. In contrast, when an object is
referred to with an indexical expression (e.g., “Find another one
that is the same as this.”), children are likely to group objects
thematically. Yamauchi and Markman (2000a) obtained a similar
result and found that a description associated with a category is
treated like alabel when the value is related to the whole exemplar
(e.g., dax means that a bug is poisonous), but like a feature when
it isrelated to a specific dimension of an exemplar (e.g., dax means

that a bug has a poison needle). Finaly, Gelman and Heyman
(1999) found that children treat novel personality traits ascribed to
aperson in the form of alabel (e.g., “Heisacarrot-eater”) as more
enduring than traits ascribed to a person in the form of a feature
(e.g., “He eats carrots’).

These psychological differences between category labels and
category features lead to systematic distinctions between what is
learned about categories during inference and classification. On
classification trials, because the category label must be predicted,
participants seek information that divides items into groups. This
information might be simple rules (and exceptions; e.g., Nosofsky,
Palmeri, & McKinley, 1994), whole exemplars (e.g., Kruschke,
1992; Medin & Schaffer, 1978; Nosofsky, 1986), or prototypes
(e.g., Reed, 1972). Because the god is to separate items into
different classes, people may seek the type of information that
helps segregate exemplars with different category labels, even
when there is little within-category similarity.

In contrast, predictive inference is strongly influenced by the
consistency between the category label and the category features.
Because category labels may point to some deep attribute that is
shared by the members of that category (Medin & Ortony, 1989),
people do not want to make inferences that violate the value most
strongly associated with the category. Thus, inference directs
peopl€’'s attention away from individual exemplars and towards
the features common to the category.

Previous Research Related to Inference
and Classification Learning

Y amauchi and Markman (1998) used linearly separable catego-
ries and investigated the impact of inference and classification on
category acquisition. Their categories consisted of four exemplars
each. Each exemplar differed on one stimulus dimension from an
underlying category prototype (see Table 1). Thus, the categories
had a linearly separable family resemblance structure (i.e., exem-
plars could be classified with an additive summation of feature
values). Yamauchi and Markman's (1998) experiments consisted
of alearning phase and atransfer phase. During the learning phase,
the participant learned these categories by responding either to
classification questions or to inference questions (see Figure 1).
The participant received feedback immediately after responding,
and was expected to learn the categories incrementally by a pro-
cess of trial and error. The participant given classification ques-

Table 1
Linearly Separable Categories
Set A Set B
F S C P Ca F S C P Ca

Al 1 1 1 0 1 Bl 0 0 0 1 0
A2 1 1 0 1 1 B2 0 0 1 0 0
A3 1 0 1 1 1 B3 0 1 0 0 0
A4 0 1 1 1 1 B4 1 0 0 0 0
A0 1 1 1 1 1 BO 0 0 0 0 0

Note. A1-A4 are the exemplars of Set A, and B1-B4 are the exemplars
of Set B. These exemplars are obtained from two prototypes, AO and BO.
F = form; S = size; C = color; P = position; Ca = category label.
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(a) Classification task (b) Inference task

® A

?
Is this figure in Set A or If this figure is in Set A,
Set B? then the item is either Red

or Green. Is this item Red
or Green?

Figure 1. Panel A: A stimulus frame for a classification trial. In a
particular classification trial, a participant is given a figure whose form,
size, color, and position are specified. Then, the participant is asked to
predict the category label (Set A or Set B) of the stimulus. Panel B: A
stimulus frame for an inference trial. In a particular inference tria, a
participant is given a figure whose form, size, position, and category label
are specified. Then, the participant is asked to predict the color of theitem.
The participant predicts different feature values in different trials.

tions predicted the category label of a stimulus. The participant
given inference questions predicted a missing feature value, given
the category label and other stimulus feature information. The
learning phase continued until the participant met an accuracy
criterion. After the learning phase, all participants carried out the
same transfer tasks involving both classification questions and
inference questions for old stimuli that appeared during the learn-
ing phase and for new stimuli that did not appear during the
learning phase.

There were three critical findings from this work. First, given
the linearly separable category structure, participants given infer-
ence learning required significantly fewer trials to reach the learn-
ing criterion than did participants given classification learning.
Second, for the inference transfer questions, participants given
inference learning were more likely to respond with the feature
values that were consistent with the prototype of the target cate-
gory than were participantsin classification learning. Third, afinal
experiment was conducted in which participants were given a
block of classification learning and a block of inference learning
with the order varied between participants. Participants who
learned categories starting with inference followed by classifica-
tion reached the learning criteria faster than did participants who
did the tasks in the opposite order (with classification learning
first). This result suggests that category representations formed
through inference learning helped classification (presumably be-
cause participants were learning the category prototype), but that
category representations learned by classification did not help
inference to the same extent (presumably because participants
were only learning enough about each category to distinguish
between the categories).

All of these results indicate that inference and classification
differ in the strategies they evoke, and hence in what participants
learn when carrying them out. Classification leads people to ex-
tract diagnostic attributes that can divide items into groups; infer-
ence guides people to find some abstract attributes that can inte-
grate the members in a category. This distinction suggests that
categories that lack integral structure will be poorly learned by
inference. In contrast, these categories should still be learnable by

classification as long as people can memorize specific exemplars
(e.g., Medin & Schaffer, 1978).

We present two studies to explore this hypothesis. In each study,
we ask people to learn a pair of nonlinearly separable categories
that have a low level of within-category similarity. The two dif-
ferent structures used in the two experiments allow us to address
specific issues about the type of information incorporated into
category representations. In the case of nonlinear categories, pro-
totypes provide a poor summary of categories. Thus, the general
prediction is that inference learning will be very difficult with the
nonlinearly separable categories, but that classification learning
will be relatively easy.

Experiment 1

To test the ease of learning nonlinearly separable categories by
inference and classification, we used geometric figures as stimuli
(see Figure 1). All the stimuli varied aong five binary feature
dimensions:. four perceptual dimensions—size (large, small), form
(circle, triangle), position (left, right), and color (red, green)—and
one category-label dimension (Set A, Set B). These geometric
stimuli were like those used by Medin and Schaffer (1978) and by
Y amauchi and Markman (1998). The category structure is shown
in Table 2. The prototypes of these categories are Stimuli A1 (with
the value of 1 on all the dimensions) and B1 (with the value 0 on
al the dimensions). The category structure (shown in Table 2) was
identical to the one used by Medin and Schaffer.

In Experiment 1, the participants learned these two categoriesin
one of two conditions: classification or inference. In the classifi-
cation learning condition, the participant saw awhole stimulus and
had to predict the category label. In the inference learning condi-
tion, the participant saw the category label and the values of three
feature dimensions and had to predict the value of the missing

Table 2
The Category Structure of Experiment 1
Set A Set B
F S C P CcCa F S C P Ca
Learning
Al 1 1 1 1 1 BL 0 O O O 0
A2 1 0 1 o0 1 B2 1 0 1 1 0
A3 0 1 0 1 1 B3 0 1 0 0 0
A0 1 1 1 1 1 BO 0 0 0 0 0
Transfer
A4 0 1 1 1 1 B4 1 0 0 O 0
A5 1 1 0 1 1 B 0 0 1 o0 0
A6 1 1 1 0 1 B6 0 0 0 1 0
B7 0 0 1 1 0
B8 1 1 0 0 0

Notes. A1-A3 are the exemplars of Set A, and B1-B3 are the exemplars
of Set B. AO isthe prototype of Set A and BO isthe prototype of Set B. The
correct answers for the inference questions are the responses that corre-
spond to the values of the table. For example, given the inference question
of the form of Stimulus A4, 0 is the correct response and 1 is the incorrect
response. F = form; S = size; C = color; P = position; Ca = category
|abel.
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dimension. Initialy, no information about the categories was given
to participants in this study, so that they had to learn the two
categories by trial and error on the basis of the feedback they
received after their response. The learning phase continued until
participants reached a criterion of 90% accuracy in three consec-
utive combined blocks (18 trials) or until they completed 30 blocks
(180 trials).

Following the learning phase, we tested the nature of the ac-
quired category representation using transfer trials. Transfer trials
consisted of classification and inference questions involving stim-
uli that appeared during the previous learning phase as well as
novel stimuli that did not appear during learning (i.e., the novel
stimuli had new combinations of feature values). In the transfer
phase, all the participants received the same trials.

The predictions for inference transfer are straightforward. The
prototypes do not provide agood summary of these categories, and
so participants should have difficulty making inferences involving
the novel items introduced in the transfer phase. The predictions
for classification transfer are more complex. The transfer stimuli
were designed to test the hypothesis that inference focuses learners
on the category prototype and that classification focuses learners
on diagnostic information (and in this study, exemplar memoriza-
tion). The transfer stimuli, A4-A6 and B4-B6, deviate equally
from the prototype of each category, but these items differ in their
similarity to individual exemplars of the categories.® Stimuli
B4-B6 are highly similar to one exemplar in Set A and one
exemplar in Set B. In contrast, Stimuli A4—AG6 are highly similar
to two exemplarsin Set A but not similar to any of the exemplars
in Set B. If participants in inference learning are extracting the
prototype of the category, then they should classify these stimuli
equally well. In contrast, participants in classification learning are
expected to engage in exemplar memorization. Thus, they should
classify Stimuli A4—-A6 more accurately than Stimuli B4-B6.
These manipulations and predictions are taken directly from Me-
din and Schaffer (1978).

A similar set of predictions can be made for Stimuli B7 (001 1)
and B8 (1 1 0 0). These two stimuli are neutral with respect to the
two prototypes; both have two dimension values consistent with
Set A and two dimension values consistent with Set B. Theseitems
are highly similar to at least one of three exemplars of Set B (B7
issimilar to B2, and B8 is similar to B3), but they are not similar
to any of the exemplars of Set A. As a consequence, Stimuli B7
and B8 should be accurately classified into Set B as a function of
exemplar storage during learning.

Method

Participants. Participants were 49 undergraduates at Columbia Uni-
versity who were paid for their participation. The data from 1 participant
were lost because of an error in recording. In total, the data from 48
participants (24 in each condition) were anayzed.

Materials. Each category consisted of three exemplars that were
shown during learning and transfer trials. In addition, there were eight new
stimuli that were given only in the transfer phase. Two versions of the
dimension value assignment were introduced in this experiment. In one
version, the value of 0 was triangle and the value of 1 was circle for form.
For color, the value of 0 was green and the value of 1 was red. For size, the
value of 0 was small and the value of 1 was large. For position, the value
of 0 was right and the value of 1 was left. In the other version, the values
of form and size were reversed. Each stimulus was bounded by a 20.3-

cm X 17.4-cm rectangular frame drawn with a solid black line on the
computer screen.

Procedure. The experiment involved three phases: a learning phase, a
filler phase, and a transfer phase. In the learning phase, participants were
randomly assigned to one of two conditions: classification or inference. In
the two conditions, participants continued in the learning phase until they
performed three consecutive blocks with a combined accuracy of 90% or
until they completed 30 blocks (180 trials). A classification block consisted
of presentations of the six exemplars. In each block, the order of stimulus
presentation was determined randomly.

Each inference block consisted of one inference question taken from
each of the six stimuli. In each block, every exemplar in the two categories
was presented exactly once. A specific question was assigned to a partic-
ular stimulus in a block to balance the number of dimension questions
given during the learning phase. For example, in Block 1, questions about
position, color, and size were assigned to Stimuli A1 and B1, A2 and B2,
and A3 and B3, respectively. In Block 2, questions about color, size, and
form were assigned to Stimuli A1 and B1, A2 and B2, and A3 and B3,
respectively. Thus, there were exactly three different dimension questions
in one block, which were shifted systematically in a set of four blocks. In
each set of four blocks, every dimension of every stimulus was queried
exactly once (24 questionsin total), and each stimulus was queried exactly
four times. Within each block, the order of stimulus presentation was
determined randomly. Within the set of four blocks, the presentation order
of each block was determined randomly.

In classification learning, participants saw one of the six stimuli and
indicated the category to which it belonged by clicking a button with the
mouse (see Figure 1A). In inference learning, participants inferred a value
for one of the four dimensions, whereas its category label and the remain-
ing three dimension values were depicted in the stimulus frame (see Figure
1B). Different perceptual dimensions were predicted on different trials.
Participants responded by clicking one of two labeled buttons with the
mouse. For each stimulus, the location of the correct choice was randomly
determined. Following each response, feedback and the correct stimuli
were presented on the screen for 3 s. The stimuli presented during feedback
were identical in both the classification and inference tasks.?

After the learning trials, there was a brief filler task, and then all
participants carried out the same transfer tasks. In the transfer phase,
participants were first given classification transfer followed by inference
transfer. The transfer stimuli consisted of six old stimuli and eight new
stimuli (see Table 2). All of these stimuli were shown both in the classi-
fication transfer task and in the inference transfer task. The order of
stimulus presentation for each task was determined randomly. In total,
there were 14 classification transfer questions (6 questions from old stimuli
and 8 questions from new stimuli), and 56 inference transfer questions (24
questions from old stimuli and 32 questions from new stimuli). The
classification transfer questions asked participants to predict the category

1 For the purposes of this discussion, we will assume that exemplarswith
the prefix A should be classified into Set A and exemplars with the prefix
B should be classified into Set B. Thus, in this discussion, we will refer to
accuracy of transfer performance. This phrasing is a simple way of talking
about the likelihood of classifying an item into the category specified by
the prefix. Obviously, because these are transfer items, there is no objec-
tively “correct” response.

2 The inference for the size of Stimuli B1 and B3 has two right answers.
Given the inference questions (0 ? 0 0), the response of the feature value 1
corresponds to Stimulus B3 and the response of the feature value O
corresponds to Stimulus B1. We gave participants a positive feedback
irrespective of their responses for this question. This treatment should
make inference learning faster, and thus functions against our hypothesis
that inference learning requires more trials than classification learning for
this category structure.
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label of a stimulus, given information about its features. The inference
transfer questions asked participants to predict the value of an unknown
feature, given the category label of the stimulus and the information about
the other features. The procedures for the transfer questions and the
learning questions were analogous except that no feedback was given
during transfer.

Results and Discussion

The basic results of Experiment 1 are consistent with our hy-
potheses (see Table 3). As predicted, given nonlinearly separable
categories, inference learning was much more difficult than clas-
sification learning. This finding contrasts with our previous re-
search with linearly separable categories, in which inference was
easier than classification (Yamauchi & Markman, 1998).

In al, 17 participants reached the learning criterion in the
inference learning condition, and 22 participants reached the cri-
terion in the classification learning condition. Considering only
those who reached the learning criterion, participants in the infer-
ence learning condition (M = 15.8) required significantly more
blocks during the learning phase than did participants in the
classification learning condition (M = 10.5), t(37) = 3.32, p <
.01. For the classification transfer of old stimuli, participants given
classification learning were significantly more accurate than par-
ticipants given inference learning; t(37) = 5.28, p < .01.3

Consistent with the prediction that classification learning would
lead to the use of exemplars, participants given classification
learning classified Transfer Stimuli A4—A6 more accurately than
the Transfer Stimuli B4—B6. In contrast, participants given infer-
ence learning did not show this trend. There was a marginaly
significant interaction between the two learning procedures (infer-
ence learning vs. classification learning) and the two sets of stimuli
(A4-A6 vs. B4-B6), F(1, 37) = 3.30, MSE = 0.073, p < .08.
Planned comparisons revealed that participants in classification
learning were more accurate in classifying Stimuli A4—A6 than in
classifying Stimuli B4-B6, t(21) = 4.18, p < .01 (Bonferroni
adjustment). In contrast, participants in inference learning did not
differ in their classification accuracy for these stimuli,
t(16) = 0.75, p > .10. As previously discussed, Stimuli A4-A6

Table 3
The Main Results From Experiment 1
New Neutral
Learning Old Average  A4-A6 B4-B6 B7 & B8
Classification transfer
Classification 0.92 0.61 0.76 0.45 0.61
Inference 0.69 0.59 0.63 0.55 0.44
Inference transfer

Classification 0.75 0.50 0.50 0.50 0.50
Inference 0.79 0.46 0.40 0.51 0.36

Note. For the neutral stimuli B7 and B8, we measured the proportion that
participants classified the two stimuli into Category B. These data are
based on the participants who reached the learning criterion. “Old” means
the old stimuli that were shown during the learning phase and the transfer
phase. “New” means the new stimuli that were shown during the transfer
phase only.

and B4-B6 are equally similar to the prototype of each category.
These stimuli diverge with respect to their similarity to individual
exemplars. Stimuli B4-B6 are highly similar to one exemplar in
Set A and one exemplar in Set B, whereas Stimuli A4—-A6 are
highly similar to two exemplarsin Set A, but are not similar to any
of the exemplars in Set B. This finding suggests that exemplar
information played a bigger role in classification learning than it
did in inference learning.

We were concerned that this interaction might reflect a floor
effect for transfer performance by participants given inference
learning. However, participants given inference learning were able
to classify the transfer items A4—A6 and B4—-B6 reasonably well
as compared with a chance level, t(17) = 1.77, .05 < p < .10.
Furthermore, their overall classification transfer performance for
these items (M = 0.59) was not significantly different from that of
the participants given classification learning (M = 0.61) as evi-
denced by the absence of amain effect of learning condition in the
analysis of these transfer items, F(1, 37) < 1.0.

Finally, we predicted that participants given classification learn-
ing would be more likely than participants given inference learning
to classify items B7 and B8 into Set B, because these items are
similar to one exemplar from Set A but none of the exemplars in
Set B. As shown in Table 3, classification performance for these
items was better for classification learning participants than for
inference learning participants, but this difference was not statis-
tically significant, t(40) = 1.04, p > .10.

For the inference transfer questions, the correct answers were
those shown in Table 2. Participants in the two conditions were
about equally accurate in making inferences for old stimuli (t < 1).
Their performance was much lower for the new stimuli than for the
old stimuli. Participants given classification learning were at
chance for these items (t < 1), and participants given inference
learning were actually significantly below chance, t(16) = —2.36,
p < .05.

We investigated the source of this anomaly by grouping every
new inference transfer question into two types: consistent type and
inconsistent type. The consistent inference questions required a
response that was in accord with the prototype of the correspond-
ing category (e.g., the question about the form of Stimulus A5 in
Table 2). The inconsistent inference questions required a response
that was inconsistent with the prototype of the corresponding
category (e.g., the question about the form of Stimulus A4). For
participants in inference learning, the average performance for
consistent questions was 0.51, whereas that for inconsistent ques-
tions was 0.26, t(16) = 4.24, p < .01. Obvioudly, participants in
inference learning found the prediction of inconsi stent-type dimen-
sions particularly difficult.

Taken together, the results of Experiment 1 support our view
that it is difficult to make inferences for nonlinearly separable
categories. Furthermore, the results indicate that inference and
classification, two of the main functions of categories, make use of
different types of category information in their tasks. In Experi-
ment 2, we investigated the generality of this hypothesis using a
different nonlinear category structure.

3The analyses in this section involve only those participants who
reached the learning criterion. Analyses that include all participants yield
the same pattern of data.
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Experiment 2

Teble 4 illugtrates the structure of the two categories used in
Experiment 2. These categories each consist of three exemplars. This
category structure is useful for distinguishing the extent to which
participants assess a summary of the category as opposed to individ-
ual exemplars. Stimulus A0 (1 11 1) summarizes Set A, and Stimulus
BO (1 1 0 0) summarizes Set B because these dimension values are
dominant for the two categories. Participants in inference learning
should have difficulty acquiring these two categories because Stimu-
lus A2 is the prototype of Set B, but is actualy a member of Set A.
Given the classification test of these stimuli, participants in inference
learning should be able to classify the prototype A1 but not A2. In
contrast, participantsin classification learning should not have trouble
correctly classifying these stimuli.

Another important aspect of this experiment is an examination
of the category information stored through classification learning.
We have proposed that inference focuses on summary information.
In contrast, there is evidence that people who are trying to classify
a set of items tend to focus on diagnostic information that reliably
distinguishes between categories (e.g. Nosofsky et al., 1994). This
focus on stimulus information that is diagnostic for predicting
category membership is also embodied in the attentional mecha-
nisms of exemplar models (Kruschke, 1992; Medin & Schaffer,
1978; Nosofsky, 1986). The hypothesis that classification tends to
focus on diagnostic stimulus dimensions, whereas inference tends
to focus on summary information, is supported by some previous
work (Yamauchi & Markman, 1998, 2000b). Experiment 2 exam-
ines this issue in another way.

There are two strategies that participants might use to learn
these categories when classifying. One possibility is that they will
focus their attention only on dimensions that are diagnostic. Given
the category structure shown in Table 4, the first two dimensions
(form and size in Table 4) are not useful for distinguishing the two
categories because the same feature values are dominant in the two
categories (the dominant values of Set A ale 1 1 1 1 and the
dominant values of Set B are 1 1 0 0). In contrast, the last two
dimensions (color and position in Table 4) are more informative
for distinguishing between the categories. Thus, if classification
promotes attention to the dimensions that differentiate the two

Table 4
The Category Structure Used in Experiment 2
Set A Set B

F S C P Ca F S C P Ca
Al 1 1 1 1 1 |/B1L 1 1 o0 1 0
A2 1 1 0 O 1 |B2 0 1 1 0 0
A3 0 0 1 1 1 B3 1 0 0 0 0
AO 1 1 1 1 1 |/BO 1 1 0 O 0

Notes. The dimension values that are not consistent with the prototype of
the corresponding category (inconsistent questions) are shown in italics.
AO is the prototype of Set A, and BO is the prototype of Set B. The
exemplar Al is the prototype of Set A, and the exemplar A2 is the
prototype of Set B. It should be noted that Stimulus A2 isincluded in Set
A, so that the two categories are not linearly separable. F = form; S = size;
C = color; P = position; Ca = category label.

categories, participants in classification learning should attend
more to color and position than to form and size.

A second possibility isthat participants who classify the stimuli
will memorize the specific exemplars. In this case, they will attend
to the specific combination of values of the stimuli seen during
learning. In this case, we should not see a difference in the
attention given to the diagnostic and nondiagnostic dimensions
during classification. Instead, transfer performance should be
based on similarity to the exemplars seen during learning.

Finally, inference is assumed to focus on relations among di-
mensions within a category, and so participants given inference
learning should be equally sensitive to the four stimulus dimen-
sions. For inference participants, however, they should be more
sensitive to the prototype of the category than to the specific values
of the particular exemplars seen during learning. This prediction
would manifest itself as more of an advantage for consistent
inferences (i.e., those that are consistent with the prototype) than
for inconsistent inferences.

Method

Participants. Participants were 48 members of the Columbia Univer-
sity community who were paid for their participation.

Materials. The materials used for Experiment 2 were analogous to
those used for Experiment 1 except that the categories in this experiment
had a different nonlinearly separable structure (see Table 4). For every
feature dimension, there were two exemplars that had a dimension value in
common, and there was one exemplar that had a different dimension value
from the rest of the members of the category. The prototype of Set A was
1111, which was also a member of the category (exemplar Al in Table
4). The prototype of Set B was 1 1 0 0, which was actually a member of
Set A (exemplar A2 in Table 4). The six exemplars from Table 4 were used
for classification learning and a subsequent classification test. Inference
learning and a subsequent inference test consisted of inferences of al the
stimulus dimensions of the six exemplars (in total 24 different questions).

Procedure. The basic procedure of this experiment was analogous to
that described in Experiment 1. In Experiment 2, however, the transfer
phase in Experiment 1 was replaced with atest phase, in which the stimuli
that were shown in both inference and classification learning were pre-
sented. During the test phase, al participants answered 6 classification
questions and 24 inference questions. There were no new transfer stimuli.

Results and Discussion

Consigtent with our predictions as well as the results of Experi-
ment 1, learning these categories was particularly difficult for partic-
ipants given inference learning. All 24 participants in classification
learning, but only 8 participants in inference learning reached the
learning criterion. Looking only at participants who met the learning
criterion, participants in classification learning required 10.4 blocks,
and participants in inference learning required 22.1 blocks during the
learning phase. The same pattern also holds if we include participants
who failed to reach the learning criterion (inferences M = 27.4,
classification: M = 10.4). Because the number of participants who
reached the learning criterion differed considerably between the two
learning procedures, the test data from each learning condition were
anayzed separately.

Participants given classification learning exhibited accurate perfor-
mance for dl six stimuli. For the six test stimuli, the accuracy ranged
from 88% to 96%. Participants were also accurate in the classification
of Stimulus A1 (M = 0.88), which is the prototype of Set A (and a
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member of Set A), aswell as Stimulus A2 (M = 0.92), which isthe
prototype of Set B, but is actually amember of Set A. During the test
phase, participants classification performance for these two stimuli
were indistinguishable; Z = —0.02, p > .10 (see Table 5).

Participants in classification learning were also accurate in the
inference test. Consistent with our prediction, classification learn-
ing revedled a tendency to direct participants to focus on the
stimulus dimensions that were useful for distinguishing between
categories. There was a tendency for the dimension inferences of
color and position (M = 0.86) to be better than those for form and
size (M = 0.80), although this difference was only marginaly
significant, t(23) = 1.83, .05 < p < .10. Consistent with this
analysis, among 24 participants in classification learning, 12 par-
ticipants showed higher performance for color and position than
for form and size, 6 participants exhibited higher performance for
form and size than for color and position, and the remaining 6
participants were equally accurate in their performance for these
two sets of dimensions. In inference learning, the data from all
participants were analyzed first, because only 8 of 24 participants
met the learning criterion. First, the average performance for the
classification test by participants in inference learning was M
= 0.70. Unlike classification learning, there is a wide disparity
between accuracy in classifying Stimulus A1 and the accuracy in
classifying Stimulus A2. Participants in inference learning accu-
rately classified the prototype stimulus of Set A—A1(1111),M
= 0.83— but not the prototype stimulus of Set B—A2 (11 00), M
= 046, Z = 241, p < .01. As mentioned earlier, Stimulus A2
(1 1 00) is the prototype of Set B, but it is placed in Set A.
This result agrees with the view that inference learning promotes
acquisition of a summary category representation.

Consistent with our prediction, participantsin inference learning
did not differ in the inferences of form and size, as compared with
the inferences of color and position (form and size: M = 0.70;
color and position: M = 0.70). This result, combined with the
results from classification learning, suggests that inference and
classification make use of different types of stimulus information.

The data taken exclusively from the eight participants who reached
thelearning criterion in inference learning show that these participants

Table 5
The Main Results of Experiment 2

Classification test

Learning Al A2 All exemplars
Classification 0.88 0.92 0.94
Inference 0.83 0.46 0.70
Inference test
Learning F S C P
Classification 0.81 0.80 0.88 0.85
Inference 0.72 0.68 0.73 0.68

Note. These data are taken from all participants including those who
reached the learning criterion and those who did not reach the criterion. In
the classification learning condition, all 24 participants reached the crite-
rion, and in the inference learning condition, 8 of 24 participants met the
criterion. Stimulus A1l is the prototype of Set A and Stimulus A2 is the
prototype of Set B, but this stimulus is included in Set A. F = form, S =
size, C = color, P = position.

70 -
.60 1
Proportion of
correct
responses -50 1 s— Consistent inferences

—%— Inconsistent inferences
.40

4 8 12 16 20 24 28
The number of learning blocks

Figure 2. Performance on learning trials in inference learning. The pro-
portions of correct responses were shown with respect to consistent infer-
ences and inconsistent inferences over every four blocks of learning trials.
Consistent inferences required the prediction of the value consistent with
the prototype, and inconsistent inferences were those that required predict-
ing the value opposite to that of the prototype.

adopted astrategy different from those who did not reach the criterion.
They were accurate in their performance for the inference questions
(M = 0.86) aswell asfor the classification questions (M = 0.81). In
addition, they classified Stimuli A1 (M = 0.80) and A2 (M = 0.80)
equally well, and they inferred form and size (M = 0.88) asaccurately
as color and position (M = 0.84), t(7) = 0.57, p > .10 (paired t test).
These eight participants might have learned the categories with an
exemplar-based strategy.

Because only 8 participants reached the learning criterion in
inference learning, we also analyzed participants' learning perfor-
mance for individual stimuli. As in Experiment 1, consistent
inferences were defined as those that required the value possessed
by the prototype, and inconsistent inferences were those that
required predicting the value opposite to that of the prototype. If
participants form a summary representation for inference, consis-
tent inferences should be more accurate than inconsistent infer-
ences. As predicted, participants' learning performance was sig-
nificantly more accurate for consistent dimensions (M = 0.63)
than for inconsistent dimensions (M = 0.56) throughout the learn-
ing phase, t(22) = 3.46, p < .01 (see Figure 2). Thus, this result
suggests that participants' difficulty learning the nonlinearly sep-
arable categories stems from their inferences for dimensions that
did not correspond to the category prototype.

In summary, the results of Experiment 2 support the hypothesis
that nonlinearly separable categories are more difficult to learn
through inference than through classification. These results are
aso consistent with the idea that inference and classification
diverge in the category information that they promote. In particu-
lar, classification learning tends to accentuate feature dimensions
that distinguish between categories.

General Discussion

These studies demonstrate that it is easier to learn categories
through classification than through inference when the categories
are not linearly separable. This finding contrasts with earlier re-
search using the same stimulus materials but with linearly separa-
ble categories, which found that inference learning was easier than
classification learning (Yamauchi & Markman, 1995, 1998,
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2000b). The distinction between inference and classification was
aso demonstrated in a previous study that did not require an
incremental learning procedure (Y amauchi & Markman, 2000a). If
we consider the results of the present studies in light of those done
before, it is clear that the disparity between classification and
inference did not stem from some superficia dissimilarity between
the two tasks, such as the number of different dimensions queried
(i.e., participants in classification learning answered only one type
of question whereas participants in inference learning answered
four different types of feature questions). Instead, the present
results support the contention that inference focuses on summary
category information regardless of the category structure, whereas
classification opportunistically exploits information that allows
accurate prediction of the category label. Although some research-
ers argue that inference and classification are different manifesta-
tions of the same task (e.g., Anderson, 1991), our results reveal
that people use different strategies to carry them out.

Why do people look for summary information (e.g., prototypes) for
inference, but seek information about specific exemplars or diagnostic
dimensions for classfication for the same category structure? This
difference may follow from an intricate link between category repre-
sentation and category function. Classification is related to object
identification and recognition (Nosofsky, 1986). Thus, linking cate-
gory labelswith individua exemplars becomes salient. Once an object
isidentified, the particular dimension values of that exemplar are less
relevant than its category membership. In contragt, inference involves
the prediction of the value of amissing feature dimension. Inthiscase,
the category identity of the object is known, and so linking the
category label to individua objects is not important. Instead, the
relationship between the category label and individua features is
pertinent to predicting the value of missing dimension values. As a
consequence, inference must relate the category label to the features
that are typical of category members.

Category Representation and Category Use

We have demonstrated that two interrelated tasks—inference
and classification—lead to different category representations.
Classification tends to focus on information that distinguishes
between categories, whereas inference focuses on information
common among exemplars within a category. This observation is
part of a more general trend that is concerned with how category
use influences category representation.

Some previous research has suggested that different kinds of
category representations may emerge even within classification
when learners have different beliefs about the type of category
being learned. Goldstone (1996) found that categories considered
interrelated were represented in a manner that accentuated con-
trasts between categories. Categories considered isolated did not
selectively enhance contrasting information. In other work,
Wattenmaker (1995) found that people in a sorting task were more
likely to create family resemblance sorts when given items from a
social domain (where the different dimension values can be in-
terrelated) than when given artifacts (where participants tend to
focus on one stimulus dimension). This finding suggests that
peopl€e’s beliefs about the domain also influence their category
representations.

Most of the recent research has been concerned with how
different ways of interacting with instances affects what is learned

about them. For example, Brooks (1999) found that categories
learned as an incidental part of carrying out another task were
more likely to be judged as having an underlying essence than
were categories learned through explicit classification. Thus, the
importance of rules to categories formed in laboratory classifica
tion studies may reflect aspects of this task rather than something
fundamental about the way categories are learned in general.

A. B. Markman and Makin (1998) explored the influence of
communication on category acquisition. They found that having to
fix common reference on a set of objects had two influences on
representation. First, because similar labels were used for similar
objects, but distinctions had to be drawn among objects with the
same label, people tended to focus on the commonalities and
differences of related items. Second, communication tended to
synchronize category structures across individuals. Thus, commu-
nication may help to ensure that different people end up with the
same category structures (see also Garrod & Doherty, 1994).

Ross (1996, 1997, 1999) has explored how the way one interacts
with a set of instances affects subsequent performance with those
instances. In one set of studies, people classified a set of diseases.
Later, they learned about various drugs that could be prescribed for
the diseases. Only a subset of the diagnostic features were actually
relevant to the treatment decision. Those features that were rele-
vant to the treatment task were ultimately treated as more impor-
tant to the diagnoses of the disease than were the features that were
equally diagnostic of the disease, but not relevant to the treatment
decision. Love (2001) found that even when items only vary on a
single stimulus dimension, how one interacts with the instances
has alarge effect on which category structures are easy or difficult
to acquire. Finally, Smith and Minda (1998; Minda & Smith, 2001;
Smith, Murray, & Minda, 1997) examined prototype-based and
exemplar-based category learning and suggested that what is ac-
quired in category learning depends on the factors that organize
categories, such as the number of exemplars and of feature dimen-
sionsin acategory, and the extent to which two categories overlap.

This brief survey of recent work reveals an emerging consensus
that category use is a crucia determinant of category representation.
Despite this trend, there are no genera conclusions that can be drawn
about how category use is related to category learning. We believe
that extracting order from this chaos will require a recognition that
there are alimited number of ways that people typicaly interact with
ingtances. Classification, predictive inference, communication, and
causal reasoning are among the most important functions of concepts.
Understanding the interactions among these tasks as categories are
acquired will go a long way toward helping us to understand the
structure of peopl€’s natural categories. Modeling will adso prove
useful in uniting the different ways of learning about categories into
a common theoretical rubric. Future research must seek a modeling
framework that can be applied across learning tasks (see Love, Mark-
man, & Yamauchi, 2000).

Conclusions

The studies presented here provide additiond evidence for the
hypothesis proposed by Y amauchi and Markman (1998) that catego-
ries learned by classification tend to focus on information that distin-
guishes between the categories whereas categories learned by making
predictive inferences tend to focus on information shared across
instances of the category. The present studies demonstrate that non-
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linearly separable categories, which have little information that is
common across members of a category, are much easier to learn
through classification than through inference. Obviously the linearity
of category structure is only one of many variables that affect infer-
ence and classification. Many other factors, such as the number of
feature dimensions and the number of exemplars in a category, are
likely to interact with the way people learn categories by inference or
by classification (see Minda & Smith, 2001; Smith & Minda, 1998;
Smith et d., 1997). Future research must address these issues and
explore how categories that are learned through a combination of
inference and classification compare with those learned by inference
and classfication aone.
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